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CHAPTER I. INTRODUCTION

Water resources is one of the most invaluable natural
resources for the lives of mankind as well as other living
things. Groundwater, which is one of the major water
resources in the United States and also all around the
world, represents about 22 percent of the total world's
fresh water including glaciers and icecaps, and represents
about 98 percent of the fresh water excluding glaciers and
icecaps (Bouwer, 1978). Adequate management of groundwater
is essential in order to keep the groundwater resources
usable.

Water movement in the subsurface is probably the most
complicated process in the hydrologic cycle. Much research
on the saturated flow system has been conducted by
hydrologists over past years, but only recently research on
unsaturated flow has received significant interest.
However, a combined saturated-unsaturated flow study is
required to incorporate the nature of the flow system in
both zones. Consequently, water movement in soils has been
considered with increasing frequency as problems that
combine both the saturated and unsaturated flow zones (Babu,
1980).

The understanding of water movement in soils is

important in many practical problems. For example, in order



to determine irrigation requirements, wastewater land
application rates, pumping rates, groundwater recharge
rates, agricultural drainage requirements, and others, it is
necessary to understand the flow mechanism in the solls both
in the saturated and unsaturated zones.

Soils are very heterogeneous and have stochastio
properties even though many previous studies were based on
the assumptions such that soils are homogeneous and have
deterministic properties. Spatial variability of soil water
properties has been introduced in groundwater hydrology and
soil physics since the 1960s and more intensively since the
late 1970s. Several flow models have been developed
treating hydraulic properties as stochastic variables rather
than a deterministic function of space (e.g., Freeze, 1975;
Dagan, 1979).

For groundwater management purposes, numerical modeling
techniques have been extensively used since the 1970s.

There are many existing mathematical models in groundwater
management that treat both quantity and quality.

In the present study, a stochastic model of one-
dimensional saturated-unsaturated flow was developed. In
this model, the hysteresis in the soil water retention
relationship and the stochastic properties of the hydraulic
conductivity were considered. A first order nearest

neighbor model was applied to handle the stochastic property



of the saturated hydraulic conductivity. Soil surface
boundary condition was determined from the measured
precipitation and pan evaporation. Modified Holtan's
equation was used in determining infiltration rate. The
groundwater flow problem was solved by a finite difference

scheme using the Douglas-Jones predictor-corrector methed.

Objectives

The overall objective of this research was to develop a
stochastic mathematical model to simulate one-dimensional
transient water flow through the integrated saturated-
unsaturated zone and to predict the variations of the water
table elevation and pressure head in the soil considering
stochastic soil water properties.

The specific objectives involved in this study were:

1. To develop a mathematical model of soil water movement
in the saturated-~unsaturated zone using stochastic
hydraulic conductivities. The model should be able to
simulate the dynamic water table behavior, pressure head
and water content profiles in the layered soil using
the Monte Carlo method.

2. To verify the model with field data.



CHAPTER II. LITERATURE REVIEW

Introduction

Groundwater flow is a complex phenomenon which is
governed by many influencing parameters of soil and water.
Groundwater flow systems can be divided into two different
domains: saturated flow and unsaturated flow. The flow
pattern of the unsaturated zone is generally vertical and
that of the saturated zone is more normally horizontal.

Many studies on the saturatad flow system have been done
using either one-, two-, or three-dimensional models.
However, a one-dimensional analysis is dominant in the study
of unsaturated flow, since there is limited lateral moveament
of water in unsaturated flow in most cases.

Three different approaches can be considered in
analyzing water flow in porous media (Bear, 1972;
Sophocleous, 1978). They are molecular, microscopic, and
macroscopic approaches. The molecular level transport
theory is developed based on the movement of water
molecules, the microscopic level transport theory is
developed by utilizing the continuum approach, and the
macroscopic level transport theory is developed by replacing
microscopic variables by their volume averages. In the
macroscopic approach, overall macroscopic values of physical

properties of a representative volume element are used.



Until the mid-1970s only saturated flow problems had
received intense interests from hydrologists. Recently,
unsaturated flow problems began to receive interests from
hydrologists.

The unsaturated flow system may be as important as the
saturated flow system. The unsaturated zone is near the
soil surface and plays a critical role in partitioning
precipitation into surface runoff, evapotranspiration, and
groundwater recharge (Milly, 1982). The reason why the
water flow In the unsaturated zone is as important as the
flow in the saturated zone is illustrated in the following
examples given by Bear (1979). The first example is the
infiltration process, which is the downward water movement
from ground surface to the water table through the
unsaturated zone. It may replenish the water table aquifer
by the water from precipitation, irrigation, etc. The
second example is related to groundwater quality.
Pollutants applied in various forms on the ground surface,
for example, fertilizers, pesticides, solid waste land
fills, septic tanks, are often dissolved in the water
applied on the soil surface. The infiltrating water then
carries pollutants as it moves downward towards the water
table. Various phenomena, such as dispersion, diffusion,
adsorption, and degradation take place during the pollutants

transport. However, one cannot study the movement of



pollutants carried by the water without information on the
movement of water itself in the unsaturated zone.

In the unsaturated zone, a fraction of the pores'
volume Is filled with air, which can physically obstruct
water movement. Water flows only through the still
saturated finer pores or in film around the soil particles.
Therefore, unsaturated flow should theoretically be treated
as two-phase flow of water and air. However, the usual
approach is to analyze only the flow of water and consider
the air as part of solid phase (Bouwer, 1978).

Liquid flux In the soil can be separated into three
components, that due to temperature gradients, that due to
water potential gradients, and that due to gravity (Philip
and De Vries, 1957). However, analyses of soil water
movement have been largely based on theories of isothermal
water movement which neglect movement induced by temperature
gradients. Philip and De Vries (1957) proposed a theory to
predict water movement as a consequence of temperature and
soil water potential gradients. Sophocleous (1978, 1979),
by modifying the Philip and De Vries equation for heat and
water transport in porous media, showed the effects of
temperature gradient on water flow were negligible at high
moisture contents, but were significant at very low moisture
contents. On the other hand, Higuchi (1984) found that

water flow induced by a temperature gradient was negligible



below a depth of 30 cm where diurnal soil temperature
variations were quickly damped.

Numerical methods, using high speed computers, are used
in the solution of the groundwater flow problems, which are
governed by a nonlinear parabolic partial differential
equation that is very difficult to solve analytically.
Finite difference schemes have been used primarily for such
flow problems. Finite element schemes, which are a
relatively new technique, have been used in flow problems
since the last two decades. In the present study, a finite
difference scheme was used since it was sufficient for the

one~-dimensional flow problems.

Theories on Saturated-Unsaturated Flow

For describing transient one-dimensional flow through
saturated-unsaturated porous media there are two different
theories (Fujioka and Kitamura, 1964). One theory admits a
fundamental difference between flow in the saturated zone
and flow in the unsaturated zone. 1In this theory, water in
the unsaturated zone is assumed to have compressibility,
while water in the saturated zone is assumed to be
incompressible. Therefore, the propagation of pore pressure
should suddenly change at the boundary between the saturated
and unsaturated soil profile and consequently the law of

movement of soil water above and below the water table is



distinctly different. Accepting this theory of
discontinuity, the transient saturated-unsaturated interface
constitutes an internal moving boundary.

For the transient one-dimensional saturated-unsaturated
flow study with the water table as a lower boundary, a
moving boundary approach has been applied since the sclution
domain fluctuates from the soil surface to the water table
(Hornberger and Remson, 1970; Gilding, 1983). This method
was originally introduced by Landau (1950) and followed by
Lotkin (1960) to study the heat flow within a melting rod.
In this approach, a transformation of the vertical
coordinates was made such that the moving boundary problem
can be converted to a problem with a fixed nodal spacing.

The second theory proposes that the flow exhibits
sufficient continuity across the water table. The water
flows continuously irrespective of whether it is above or
below the water table in the whole soil-water-air system
(Freeze, 1969). Therefore, it is mathematically unnecessary
to differentiate between the saturated and unsaturated
zones.

Fujioka and Kitamura (1964), studying the vertical
drainage problem using a laboratory column, found no sudden
change of pressure at the boundary between the saturated
zone and unsaturated zone of soil water. They concluded

that the s0il water near the water table may be in a



continuous and rather unsaturated system, so that we cannot
consider the soil water of positive pressure to de
completely saturated.

In the present study, the theory of continuity of
pressure across the saturated-unsaturated interface is

adopted.

Coverning Equation

A physically based analysis of water flow in the soil
must begin with a derivation of the governing equation and
accompanying boundary and initial conditions from
established principles. The general flow equation for the
saturated-unsaturated zone can be derived from the Daroy's
lan and the principle of continuity of mass.

Here, it is shown that the Darcy's equation can be
derived from the principle of momentum conservation. For an
isothermal, Newtonian incompressible fluid, for which the
fluid viscosity and density are constant, the momentum
equation leads to the Navier-Stokes equation (White, 1979;
Bear, 1972). The Navier-Stokes equation is given by:

v
Pe %’E = 0,8 - WP, ¥ uv'V (2.1)

where Py= density of fluid,
V s velocity of fluid,

t - tiae.
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g = gravitational acceleration
Pys fluid pressure,

u = viscosity of fluid,

vV = gradient operator, and

vl Laplacian operator.

The left hand side term represents inertial force, and
the right hand side terms represent gravity force, pressure
force, and viscous force per unit volume. The microscopic
equation (2.1) must be transformed to a more useful
macroscopic equation using average values of velocity and
pressure. Averaging the Navier-3tokes equation is discussed
by Bear (1972). In addition, it is assumed that in a porous
medium the inertial forces are negligidble, which is the case
with a steady, laminar flow and that the viscous forces are
proportional to the mean velocity of fluid with an opposite
direction. Then, if the z-coordinate is positive upward,

Eq. (2.1) reduces to:
0= -p,g -~ VP, - & v (2.2)

where Pzz macroscopic average fluid pressure,
V = macroscopic average flow velocity, and
k = intrinsic permeability.

Solving Eq. (2.2) for V we will get:

k
V= -

P, B
f; V(h +2) = - K vé (2.3)

where h = pressure head,



1

z

K

gravitational head,

hydraulic oconductivity, and
¢ = total head.

Eq. (2.3) is the Darcy's equation for the steady-
isothermal sclute free of water in an isotropic saturated
porous media. In the above equation, the statistical
requirement that the medium must be sufficiently homogeneous
on the scale of averaging volume should be satisfied.
Darcy's equation can be applied to unsaturated media when
the hydraulic conductivity is allowed to vary as a function
of pressure head h or volumetric water content 6. For the

unsaturated flow, Eq. (2.3) can be expressed as:
Vs=-K(0) V¢, or V= - K(h) Vo (2.4)

Derivation of the continuity equation is given in
Hillel (1980a). Consider a volume element of soil in the
shape of a rectangular parallelepiped inside a space shown
in Figure 1. Assume the sides of the volume element are Ax,
Ay, and Az, and no source or sink exists inside the volume.
The continuity principle is defined by:

Mass inflow rate - mass outflow rate

= rate of mass change in the volume

That is, considering only x~-direction to simplify the

derivation:
9p,q 3p,(nS )
L
pquyAz -« Peq + 5% AX ) AyAz = ;t' = AxAyAz (2.5)
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where q = flow rate across a unit oross section in the
x=-direction
n = porosity, and
Swa degree of saturation.
In Eq. (2.5), the product of porosity and degree of
saturation is equal to water content. The mass outflow rate
is derived from truncated Taylor seriea. Eq. (2.5) can be

rearranged assuming constant soil water density:

a(nS_)
w )
W-— - - ﬁ (2.6)
]
4
»
y
&

Figure 1. An element volume in a Cartesian coordinate
systen
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By substituting Eq. (2.4) into Eq. (2.6) since Vzq, the

general one-dimensional flow equation follows:

] (nsw) 36 :

-t " 'é-?; [ X(6) % (2.7)

Now, the left hand side term of Bq. (2.7) can be modified to

further simplify the equation. By expanding the left hand

side:
3(ns. ) 38
w v an
o T TR P T (2.8)

But,§% can be replaced by s‘%%. where S_ is the specific

s
storage, which is specific yleld divided by the aquifer

thickness. Then,

a(nsw) asw ah

For practical purposes, it is convenient to express Eq.
(2.9) in terms of the pressure head and the volumetric water
content rather than in terms of pressure head and degree of

saturation. Then, Eq. (2.5) becomes:

a(ns.)
._&_.‘!_...g.:.».%s‘-g% (2.10)

Applying the chain rule to Bq. (2.10) and substituting into
Eq. (2.7) we obtain:

38 . 8 3h _ 3 2

This equation can be modified by replacing % with g (Neuman



1h

et al., 1974; Van Genuchten, 1982):

20 3h . _2 2
(35 + 83‘ ) 3t " 3x [ K(o) = ] (2.12)

The first term of the left hand side of Eq. (2.12) is the
slope of the water content-moisture tension curve and is
zero for fully saturated flow. For the second term, it is
assumed that 8' can be disregarded in the unsaturated flow
because the effect of compressibility on the storage of
water is very small in comparison to the effect of changes
in the moisture content (Neuman, 1973). Therefore, 8 = 1 in
the saturated zone and 8 s 0 in the unsaturated zone. Eq.
(2.12) is the general governing equation for the one-
dimensional saturated-unsaturated flow. For two- or three-
dimensional flow systems, the governing equation can be
derived as the same manner. For one-dimensional vertical
flow with axis positive upward, the hydraulic head is
expressed as the sum of pressure head and elevation head.

Then, Eq. (2.12) with a3 source or sink term will be changed

to:
3h _ 3 2h
Cig =35z L KO) (57 +1) 1+ 5(,¢) (2.13)

where C = %% + Bss. the generalized specific water

capacity,

S(z,t) = source or sink, showing rate of supply or

extraction from a differential volume of
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soil.
S(z,t) is positive for a source and negative for a sink.
Eq. (2.13) was used in the present study.

In this section, the governing equation was derived
using the h-based instead of 6-based. Milly and Eagleson
(1980) discussed the differences between the two approaches.
The advantages of the h-based equation are: (1) it is
applicable {n both the unsaturated and saturated zones, and

(2) the flux expression is simpler.

Boundary Conditions

Boundary conditions and initial conditions are
necessary in order to solve the soil water flow equation.
Two boundary conditions, top and bottom, are required in a
vertical one-dimensional flow system if the flow domain is
finite. The top boundary is an atmospheric boundary which
is along the soil-air interface on the top of the soil and
the bottom boundary is at the lower end of flow domain which
may be either saturated or unsaturated. Ejither pressure
head or flux can be used to specify the boundary conditions.
However, the flux boundary condition is easier to determine
and consequently is the most widely used method in previous
studies.

Along the soil-air interface, moisture can come into or

leave from the soil water system by infiltration or
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evaporation, respectively. When the potential rate of
infiltration exceeds the infiltration capacity of the soil,
a portion of the water may be lost by runoff. The potential
infiltration rate from a given soil depends only on
atmospheric conditions, wpilc the actual infiltration rate
is limited by the ability of the soil medium to infiltrate.
The same thing happens for potential and actual evaporation.
The actual evaporation rate across the top boundary is
therefore governed by soil water conditions such as
antecedent moisture content, while the potential rate is
controlled by atmospheric or other external conditions.
Therefore, the exact top boundary condition at the soil
surface cannot be predicted a priori. The boundary flux
obtained by solving the flow equation should be checked
against the potential rates.

Generally, the lower boundary flux condition cannot be
determined from direct measurement, but must be determined
from other indirect ways. The water budget approach or
weighing lysimeter method is the best method to use. The
hydraulic gradient between two different vertical points can
be used to calculate the flux or through model calibration
to a set of field data the lower boundary flux can be

determined.
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Infiltration

The infiltration process is a complex phenomenon which
has several influencing parameters such as soil properties,
rainfall intensity, initial water content, depth of
groundwater level, etc. Infiltration has the largest
fnfluence in the runoff volume on a watershed (Mein and
Larson, 1973). Research on this topic has been conducted
for several decades since Green and Ampt (1911) developed a
physically based infiltration equation.

There are several inflltration equations, either
empirical or theoretical, found in the current literature.
Empirical equations include the Kostiakov equation, Horton
equation, and Holtan equation. Theoretical equations
include the Green-Ampt equation and Philip equation. These
equations cannot be used directly for soils with different
antecedent moisture contents without some modifications.
Huggins and Monke (1968) modified Holtan's equation, and
Skaggs (1978) modified the Green-Ampt equation. Huber et
al. (1982) modified both the Horton’s and Green-Ampt
equations. Mein and Larson (1973) and Chu (1978) modified
the Green-Ampt equation for the two stages of infiltration,
before and after surface ponding. Mein and Larson (1973)
used only steady rainfall, and Chu (1978) extended Mein and
Larson's study for unsteady rainfall.

Rawls and Brakensiek (1983) presented a procedure with
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tables and graphs for estimating the Green-Ampt equation
parameters, such as effective porosity, capillary pressure
head, and saturated hydraulic conductivity, based on readily
available soils and agronomia data.

Holtan et al. (1967) developed an iterative
computational procedure for the modified Holtan's equation
to determine the incremental infiltration for a time period.
This computational procedure has been used in several later
studies (e.g., DeBoer, 1969; Anderson, 1975; Shahghasenmi,
1980).

Table 1 shows various infiltration equations. All the
original infiltration equations in Table 1 were discussed in

detail by Hillel (1980b).

Evapotranspiration
Potential evapotranspiration depends on climatological

factors such as solar radiation, air temperature, humidity
and wind velocity. Actual evapotranspiration can be
measured directly by weighing lysimeters. However, such
measurements are costly and are rarely available. Host
potential evapotranspiration (PET) values are obtained from
climatological data using one of the many predictor models.
A summary of the models for PET including required input
data is given in Skaggs (1978). Perhaps the most reliable

model is the Penman equation. The input data required for
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Table 1. Infiltration equations

Name Equation
Green and Ampt i = ic + A/ theoretical
Philip {2 ic + (s8/72) t* theoretical
Kostiakov { »« Bt™D empirical
Horton e g+ (8, - 1) L empirical
Holtan Lat, +aM- e empirical
Modified Holtan 1 a i + a(-""--.I.—l)P empirical
Modified G-A i s A+ B/1 theoretical
Modified G-A 3K (1o EQIEE) theoretical
A, B, a, k, m, n, p = parameters depending on soil

properties.

1 = accumulated infiltration.
i = infiltration rate.
ic = steady state infiltration rate.
i, = initial infiltration rate.
K s hydraulic conductivity.
M = water storage capacity of soil.
nd s initial soil moisture deficit.
S = water storage potential above any impedint strata.
Sh = average suction head at the wetting front.
3 = sorptivity.
T = total pore volume above any impeding strata.
t s time from the beginning of the infiltration.
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the Penman equation include air temperature, wind velocity,
humidity, and solar radiation. However, these
climatological input data are all available at only very few
locations. Saxton et al. (1974a) developed a linear
regression equation to predict PET for brome grass from the
pan evaporation data which are relatively easy to obtain.
Skaggs (1978) used the Thornthwaite model which requires
only mean daily temperature as an input. Selection of the
prediction model dependa upon the avallability of the
climatological data and the precision requirement of the
simulation model. Actual evapotranspiration rates depend
upon moisture availablility in the top soil layer as well as
soil cover, plant leaf and root system development. Saxton
et al. (1974b) developed an ET model based on energy
distribution which included crop canopy and root systenm.

Ritchie (1972) fitted an exponential equation to
describe the relationship between the fractional net
radiation reaching the soil surface and the leaf area index
for several different row crops. MHolz and Reamson (1970)
introduced a simple equation to determine the root
extraction term for plant transpiration which approximates
the pattern of plant transpiration such that 40%, 30%, 20%,
and 10% of the total transpiration comes from each

successively deeper root zone.
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Deep percolation and lateral flow

Deep percolation, which is used to represent the flux
across the bottom boundary whether it is saturated or not,
is not easy to measure directly. It can be measured using a
weighing lysimeter or can be calculated by the water budget
approach. It also can be calculated from the hydraulic
gradient obtained from piezometers at different depths.

Lateral flow, important in the saturated zone, can be
calculated from the horizontal hydraulic gradient. It also
can be predicted from the assumption that the groundwater
table is nearly parallel to the ground surface. From this
assumption, the lateral flow can de neglected if the ground
surface has a small or no slope.

Both deep percolation and lateral flow can be
determined from the model calibration procedure when field

determination is not possible.

Sofl Properties
Soil has various parameters of interest in determining
moisture movement. Porosity, water content, pressure head,
hydraulic conductivity, texture, and others are some of
those parameters. Many of these parameters exhibit a
hysteretic property. In this section, some concepts of soil
water properties as well as some methods of determining them

are discussed.
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Measurement of soil water pressure and water content

The variable amount of water contained in a unit volume
of soil is known as volumetric water content. Many soil
properties, such as moisture tension and unsaturated
hydraulic conductivity, depend very strongly upon water
content (Hi{llel, 1980a). There are dboth direct and indirect
methods of measuring water content including: gravimetrio,
electrical resistance blook, neutron scattering, and gamma
ray methods. The gravimetric method, which is the only
direct method, consists of soil sampling, weighing and
drying. This method is laborious and needs a long time to
oven dry the soil samples. The electrical resistance block
method is based upon the theory that the electrical
resistance of a porous block placed in the soil depends upon
the solil water suction. This method is accurate only when
the soil undergoes no wetting reversal during the period of
measurement. The neutron moisture meter consists of two
main parts: a probe, which is lowered into an access tube
inserted vertically into the soil, and a scaler, which
monitors the flux of slow neutrons scattered by the soil.
This method has gained widespread acceptance as an efficient
and reliable technique for monitoring soil moisture in the
field. The major disadvantage of this method is the poor
resolution quality. The sphere of influence of the

measurement has a radius of approximately 30 cm (Bouwer,
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1978).

The gamma ray scanner consists of two spatially
separated probes, a source and a detector. Gamma rays are
emitted from the source and detected by the detector after
being absorbed in soil water. This method is used in the
laboratory under controlled conditions.

Soil water pressure (tension) can be measured by a
tensiometer. The tensiometer is a practical device for in
situ measurement of pressure head in the soil. It consists
of three parts: a porous cup, & connecting tube, and a
manometer. A pressure transducer can be used instead of a
manometer. The effective range of tensiometer measurements

15 0 to 0.8 atmosphere.

Soil water retention

The pressure or matric potential, h, is a variable to
describe the energy level of soil solution within an
unsaturated porous medium. The quantity °*gh', where g is
gravitational acceleration, is the amount of energy required
to move a unit mass of water, isothermally and reversibly,
from a porous medium to the free water surface. When soil
water is at hydrostatic pressure greater than atmospheric,
its pressure potential is considered positive. When it is

at a pressure lower than atmospheric, the pressure potential

is considered negative. This negative pressure potential
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has been termed capillary potential or matric potential.

The forces ordinarily considered to be the determinants
of h in unsaturated media are capillary attraction and
adsorption. These forces attract and bind water in the soil
and lower its potential energy below that of bulk water.
Capillarity is evidenced in the pressure differences across
curved air-water interfaces under surface tension.
Adsorption involves the relatively short distance
interaction of water with the surface of the solid phase of
the medium and forms hydration envelopes over the partlicle
surfaces. These two mechanisas of soll water interaction

are fllustrated in Figure 2.

T Y Y Y Y L L L L L LY dihedututut

Figure 2. Water in an unsaturated zone under capillarity
and adsorption (after Hillel, 1980a)
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The magnitude of these forces are determined by the
microscopic distribution of water in the medium, by
temperature, and by the nature of the medium itself (Milly
and Bagleson, 1980). 1In relatively moist media, the effect
of capillarity is dominant in determining h. Only the
largest pores are air filled, and the air-water interface
has relatively small curvature. Bear (1979) expressed the
pressure in the water just beneath the ajir-water interface

as:
P, = 20/r), (2.14)

where Pc s pressure in water, just beneath the air-water
interface,
o s interfacial surface tension,
o * harmonic mean radius of curvature of the
interface, negative for concave water surface.

Then, the pressure head, h, is given by:
h =P /y = 20/vr, (2.15)

where y = specific gravity of liquid water.

The amount of water retained at a given level of h in
the capillary regime is thus determined by the distribution
of the larger pore sizes. It follows that the soil
structure is a strong factor in determining the relation
between h and water content, 0, for large 6.

As water is removed from the medium, the remaining
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vater becomes increasingly closer to the soil particle
surface. The effect of adsorption becomes predominant at
low values of 6. 1In the adsorption regime, the moisture
content at fixed h for any soil is correlated with the
specific surface of the medium and can therefore be
considered a funoction of soil texture and mineralogy.

The value of h at the boundary between the capillary
and adsorption regimes, if such a boundary can be defined,
has not been clearly determined. Miller and Miller (1955)
suggest that the capillary theory of soll water is valid at
least in the coarse silt to sand range. Buckman and Brady
(1969) divided between capillary and adsorbed water at about
pF = 4.5, where pF is defined by:s

PF = log,4(-h) (2.16)

where h = negative pressure (suction) head in cm.

Hillel (1980a) says that below pF = 3 the capillary effect
is dominant and as pF increases importance of adsorption is
increased.

McQueen and Miller (1974) studied the relationship
between pF and © for pF up to 7. They concluded that pF can
be represented empirically as a piecewise linear function of
6 for values of © not near saturation. The three segments
are:

PF 5.0 - 7.0 tightly adsorbed segment,
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pF 2.5 -« 5.0 adsorbed film segment, and

pfF 0.0 - 3.0 capillary segment.

So far there is no distinot division between the
capillary and adsorption range. The closer the water
molecule to the soil particle, the stronger the adsorptive
force. Care should be exercised in assuming the range of pF
that may be treated using capillary theory.

There are several empirical equations for the soil
water retention. Brooks and Corey (1964) analyzed drying
curves for many consolidated rook samples and found the

relationship between h and 6 aa:

|
06 -0 by

Es b

where h

air entry value,

a

er = the residual water content, which is the minimum
water content value at which dé/dh approaches
zero on a retention curve,

a‘ = the saturated water content, and

A = a fitted parameter.

The pressure potential ba is the value of h at which air is
first drawn through the soil sample during dewatering in the
laboratory.

Mualem (1976) fitted the published data for 45 soils to

the Brooks and Corey model. Residual water contents ranged
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from 0.01 to 0.28, but were mostly less than 0.10. The A
ranged from 0.19 to 11.67, but were mostly less than 3.0.

Hysteresis
The relationship between pressure head and water

content can be obtained in two ways: (1) by gradually
drying an initially saturated soil, and (2) by gradually
wetting an initially dry soil. Each ylelds a continuous
curve, but the curves are not identical. The equilibrium
water content at a given pressure is greater in drying than
in wetting as illustrated in Figure 3. This nonunique
characteristic of the functions h and @ for a particular
soll at a fixed temperature is known as hysteresis.

Complete drying and wetting proceed along the cycle of
curves A and B in Figure 3. They are called the main
wetting and drying curves, respectively. When wetting
reversals occur anywhere other than at the common end points
of curves A and B, scanning curves, C to F in Figure 3
result. Curves C and D are primary wetting and drying
scanning curves, while E and F are secondary wetting and
drying scanning curves. It is apparent that the relation
between h and @ at any time is dependent on the wetting
history of the medium.

The hysteresis effect may be attributed to several

causes (Hillel, 1980a). They are:
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B (drying)

MNatric suction, h

(wetting)

Water content, ¢

Figure 3. The hysteretic soil water retention curves
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the ink bottle effect,
the contact angle effect,
the entrapped air effect, and

the swelling, shrinking, or aging effect.

Among them the ink bottle effect has been quite successful

in explaining the hysteresis. The ink bottle effect is that

at least some pores drain and refill at different capillary

pressures.

Miller and Miller (1956) recognized this effect

as a natural implication of the capillary theory of molsture

relation.

Figure 4 shows the concept of the ink bottle pore and

Figure 4.

:".

e

GRADUAL EMPTYNG

SUDDEN FiLLING QA00EN EMPTYING ‘

GRADUAL FiLLING

Ink bottle hysteresis in a single bottle
(after Miller and Miller, 1956
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how hysteresis in a single pore could occur. Anywhere
between p = =5 cm and p = =15 om there are two possible
solutions of Eq. (2.15); one a full state, the other an
empty state. At =5 cm, the empty state becomes unstadble and
executes a sudden and irreversible "Haines jump" to the full
state at p = -5 om. Conversely, at -15 cm the full state
"Halnes jump" occurs to the empty state. In practice, these
Jumps occur in milliseconds, so the pressure at which they
occur is independent of the time rate of approach to that

pressure.

Determination of hydraulic conductivity
Knowledge of the relationship of unsaturated hydraulic

conductivity with either water content or pressure head is
required to solve for unsaturated flow problems. However,
reliable estimates of the unsaturated hydraulic conductivity
are especially difficult to obtain, partly because of its
extensive variability in the field, and partly because
measuring this parameter is time consuming and expensive
(Van Genuchten, 1980).

Values of hydraulic conductivity are sensitive to small
changes in water content (Mielsen et al., 1973).
Characteristically, hydraulic conductivity values decrease
an order of magnitude for only a small decrease in water

content. It is not unusual for hydraulic conductivity to
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range over five orders of magnitude for water contents
measured in the field. 1In addition, unsaturated hydraulic
conductivity shows hysteretio effects, especially as
functions of pressure head, which makes this problem more
difficult.

There are several methods of measuring hydraulic
conductivity either in the field or in the laboratory.
These methods are discussed in detail by Hillel (1980a). 1In
situ methods include the sprinkling infiltration method,
impeding layer method, and redistribution method.
Laboratory methods include the steady state method and
transient state method.

However, estimating the hydraullc conductivity of a
soil as a function of its water content in the field or by
taking soil samples to the laboratory for analysis is
laborious and time consuming (Libardi et al., 1980).
Consequently, empirical and theoretical relationships
between unsaturated conductivity and either water content or
pressure head have been proposed. Several empirical
relationships have been developed from soil water retention
curves (e.g., Brooks and Corey, 1964; Campbell, 1974, and
referenced therein). All of these empirical equations are
power or exponential functions of pressure head or water
content as shown in Table 2. Bresler and Green (1982)

suggested, based on their experience, that if one is
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Table 2. Empirical equations relating hydraulic

conductivity to water content or pressure head

No. Equation Independent Fitting
variable parameters
n
(1) K(h) = a/h h a, n
(2) K(h) s a/ (b + h") h a, b, n
(3) K(8) = ag" 8 a2, n
(4) K(h) = K, (h/m)® h n
(5) K(h) = Kg /11 + (W/n)") h ®
(6) K(h) = K, expla(h = h)]} h a
e -0 Y
(1) K(0) = K, (-é-;—-:-%r) 8 v, 0,
h =z soil water pressure (suction) head.
@ = volumetric water content.
ha s air entry value.
hw z water entry value.
Kg = saturated hydraulic conductivity.
8g = saturated water content.
9, = residual water content.

b, m, n, and ¥ = parameters to be determined.
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interested in the whole range of K(6), then the power

function equations (4) and (7) in Table 2 were superior.
Mualem (1976) developed a new model for predioting the

relative hydraulic conductivity from a soil water retention

gurve:

K.(8) = se’i [ .r:r E‘I('iT dx/iz: E%'ﬂ' dx 12 (2.18)
where Kr 3 K(e)lk', relative hydraulic conductivity,
K‘ a saturated hydraulic conductivity,
h(x)z soil water pressure head as a function of water
content,
0 - Or
s‘ 3 3:'7'3;’ effective saturation where subsoripts
s and r represent saturated and residual values
of the soil water content, respectively.
Van Genuchten (1980) developed a closed form equation
for predicting the hydraulic conductivity of unsaturated
soil based upon Mualem's equation with the general retention

equation of the forms

Se(h) = | DE—— ] (2.19)

where h = absolute value of the pressure head,
a, N = nonlinear regression parameters to be
determined,

.:1'1/“v
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The relative hydraulic conductivity is expressed as a

function of pressure head as:

NP 2

N-1
K_(h) = {1 - an) 711+ (an)" ] ) (2.20)

m
[1+ (am¥ ) 2

Eqs. (2.19) and (2.20) do not consider hysteresis.
Consequently, for a hysteretic model two or more sets of

parameter values for drying and wetting conditions must be

determined.

Stochastic Analysis

Unlike small laboratory soil columns, field soils are
heterogeneous, hence the development of water and solute
transport models as well as the technique for sampling field
soils must account for spatial variability. Studies on
heterogeneity of agricultural and watershed lands indicate
that soils exhibit appreciable field variability in
properties which affect soil water movement. Nielsen et al.
(1973) reported a wide range (four orders of magnitude) of
steady state hydraulic conductivity in a 150-hectare
experimental site. They also reported the steady state
hydraulic conductivities were log normally distributed
(Nielsen et al., 1973). Willardson and Hurst (1965) found a
log normal distribution of hydraulic conductivity based on

254 auger hole measurements in 12 fields in Australia and on
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1498 samples from soils in California.

In order to account for the variability in soil water
properties, a stochastic approach has been introduced in
groundwater studies during the last two decades. All the
soil water properties have spatial variability. However,
the f{eld variability is simplified by assuming that only
the saturated hydraulic conductivity is spatially variable,
while the other properties such as porosity, residual water
content, and air entry value, are constant over the field
(Dagan and Bresler, 1983). The justification of this
assumption s that the saturated hydraulic conductivity
changes considerably over the field, while the other
parameters vary in much narrower limits. Previous analysis
by Russo and Bresler (1982) showed that the impact of the
variability of these parameters is indeed limited.

There are several approaches to provide stochastic
prediction in groundwater flow problems. McMillan (1966),
Freeze (1975), and Smith and Freeze (197%9a,b) used the Monte
Carlo method for modeling the stochastic nature of the
saturated flow problems. Bennion and Hope (1974), Gelhar
(1976) and Bakr et al. (1978) used spectral analysis
technique for steady saturated flow studies. Tang and
Pinder (1977) used perturbation theory for solving transient
saturated flow problems. Andersson and Shapiro (1983)

compared the perturbation method with the Monte Carlo method
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for one-dimensional steady state unsaturated flow. Dagan
and Bresler (1983) and Bresler and Dagan (1983) studied
one-dimensional unsaturated stochastic flow problems using a
statistical averaging procedure and probability density
function of saturated hydraulic conductivity.

The Monte Carlo method and the spectral analysis method
are considered the most promising techniques in the
stochastic analysis of the groundwater flow problems. In
both methods, the integral scale, which characterizes the
average distance over which point values of hydraulic
conductivity are positively correlated, is an important
parameter. The integral scale i{s the upper limit on
discretization in a medium. The Monte Carlo method and the

spectral analysis method are discussed further.

Monte Carlo method

The Monte Carlo method is a method of solving
mathematical and physical problems approximately by
simulation using random quantities or input variables.
Prior to the appearance of electronic computers, this method
was not widely applicable since the simulation of random
quantities by hand is a very laborious process.

The Monte Carlo method makes possible the simulation of
any process influenced by random factors. It can even be

used to solve many mathematical problems involving no chance
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by artificially devising a probabilistic model. For these
reasons, the Monte Carlo method can be considered a
universal method for solving mathematical problems (Sobol,
1974).

The random variable in a Monte Carlo model can bde
either discrete or continuous. Random numbers can be
classified by pure random, pseudorandom, and quasirandom
numbers. A detailed description of random numbers can be
found in Hammersley and Handscomb (1964). Generation of
random numbers and transformation into a specific
probabilistic distribution are discussed in detail elsewhere
(Hammersley and Handscomb, 1964; Sobol, 1974).

The use of the Monte Carlo method in stochastic
groundwater problems involves repetitive simulations using a
mathematical model coupled with a statistical analysis of
the results. Freeze (1975) used the Monte Carlo method for
stochastioc saturated flow studies without considering
spatial correlation of sofl properties. Later, Smith
(1978), and Smith and Freeze (1979a,b) considered spatial
correlation in saturated hydraulic conductivity using a
first order nearest neighbor model, which will be discussed
in detail in the next chapter. They predicted the mean and
variance of hydraulic head from the spatially varying
hydraulic conductivity input. Smith and Hebbert (1979)
applied the Monte Carlo method in studying hydrologic
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effects of spatial variability on infiltration and Warrick
et al. (1977) applied the Monte Carlo method in their

unsaturated flow study.

Spectral analysis
This technique is an analytical approach to determine

the stochastic variability in soil properties. This
technique has been used by Bennion and Hope (1974) to
analyze one-dimensional variability of porosity and
permeability from oil reservoirs. Gelhar (1976) and Bakr et
al. (1978) applied this method to study spatial variability
of steady flows In a saturated aquifer. In spectral
analysis, two baslic assumptions must be made: (1) the
medium and flow system are considered to be continuous and
(2) there is a spatial correlation structure of the medium
properties. Variation of hydraulic conductivity can be
thought of in the continuum sense as a random field which is
characterized by a spatial covariance function and spectral
density function.

The procedure for the spectral analysis as shown by
Bakr et al. (1978) can be summarized as follows:
1. Develop the governing partial differential flow

equation.
2. Express two variables, hydraulic head and hydraulic

conductivity, in the equation in terms of a mean and a
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perturbation neglecting the product of perturbations.

3. Solve the fluctuation of hydraulic head in the
perturbation equation in terms of fluctuation of
hydraulioc conductivity following stochastic Fourier-
Stieltjes integral.

4., Find the spectral density funotion of fluotuation of
hydraulic head by using the inverse Fourier transform.

S. FPind the autocovariance of head fluctuation by Fourier
transform of spectral density functlon of hydraulioc

head.

Comparison
Smith (1978), and Smith and Preeze (1979a) discussed

the differences and the advantages of the two techniques of
stochastic analysis. The major difference in these
techniques i3 that the conductivity field is represented by
a series of discrete blocks in the Monte Carlo method, while
it i3 represented by a continuum in spectral analysis. They
pointed out that the disadvantages of the spectral analysis
method are that they are apparently inappropriate for
problems in which the input variables have a large variance
and for problems of bounded domains. Of course, the
advantage of the spectral analysis method is that it gives
an analytical solution. On the other hand, the Monte Carlo

method can handle problems with both large variance in the
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input variables and bounded domains, but it requires larger
amounts of computer time for solution.

In this study, the transient saturated-unsaturated
bounded domain flow problem was considered, and the Monte

Carlo method was used.

Analytical and Numerical Solutions

The governing equation of saturated-unsaturated flow is
a nonlinear partial differential equation with variable
coefficients and cannot be solved by the usual methods.
Nonlinearity greatly complicates the mathematics of
unsaturated flow problems. Kirkham and Powers (1972) showed
a technique to solve the nonlinear partial differential flow
equation analytically. They used Boltzmann's transformation
applied to the nonlinear partial differential equation to
obtain an ordinary differential equation which can be solved
analytically.

Numerical methods are the principal approach to the
solution of unsaturated flow probleas. Fizber finite
difference or finite element method can be used for the
saturated-unsaturated flow. Each one has its own advantages
and disadvantages, and it is hard to say that one is always
better than the other. It depends on the problem being
modeled and other conditions. One of the major reasons in

choosing the finite element method over a more simple finite
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difference method is the stability of the resulting
nonlinear equation system (Cooley, 1983). Although the
recently introduced finite element method may be
advantageous for two or three dimensional problems,
especially with complex geometries, they show little or no
advantage over the finite difference method for transient
one-dimensional problems (Emery and Carson, 1971).

The fundamental idea in the finite difference technique
is to replace all derivatives by finite differences and thus
reduce the original continuous boundary value problem to a
discrete set of simultaneous algebraic equations. There are
several different solution formations for finite difference
models, but these can be grouped as either implicit or
explicit methods. Although explicit methods for solving
differential equations are simple and straightforward, the
restriction on mesh size and time steps in order to meet
stability requirements is severe. This sometimes make
explicit methods unsuitable for practical applications. On
the other hand, the implicit method is less restrictive in
mesh size and time steps but they are numerically more
complicated because they involve the solution of a system of
equations at each time step. Detailed descriptions of these
schemes can be found elsewhere (e.g., Richtmyer and Morton,
1967; Remson et al., 1971; Lapidus and Pinder, 1982).

Haverkamp et al. (1977), in a comparison among six
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different finite difference schemes applied to a one-
dimensional infiltration prodblem, found that: (1) the
explicit methods used between 5 to 10 times more computer
time than the implicit methods, (2) results using the
Kirchhoff integral transformation were no better than those
obtained with the implicit model with no transformation, and
(3) considering computer time and numerical stability, the
implicit finite difference approximation has the widest
range of applicability for predicting water movement in the
soll both in the saturated and unsaturated zones.

Based upon the above diascussions, the implicit finite
difference method was considered better than the explicit
method for the subsurface flow problems. The Crank-Nicolson
method and the Douglas-Jones predictor-corrector method are
the most successful solution methods applied to the one-
dimensional subsurface flow studies. These two implicit
methods received much attention from researchers owing to
their numerical stability and simplicity. These methods
result in a tridiagonal set of simultaneous equations which
can be solved rapidly using the Thomas algorithm (Remson et
al., 1971) by a digital computer.

Douglas and Jones (1963) developed an implicit
predictor-corrector method for solution of nonlinear
parabolic differential equations. The predictor and

corrector difference equations are modified form of the
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Crank-Nicolson equation. In the predictor stage, the
equation solves for the values of pressure head at a half
time step. The intermediate values of pressure head are
used to update the coefficients which in turn are used in
the corrector stage to obtain a solution at the full time
step. This scheme is nonconditionally stable and has
relatively high accuracy with a uniform rate of convergence
o(h2 + kalz) where h and k are step sizes of space
coordinate and time, respectively (Remson et al., 1971;
Gilding, 1983). A particulur advantage of this method is
that this sacheme {s noniterative and leads to a tridiagonal
system of equations which can be solved efficiently.
Several researchers (e.g., Afshar and Marino, 1978; Hornung
and Messing, 1980; Gilding, 1983) successfully applied the
Douglas-Jones predictor-corrector method in their one-
dimensional flow studies.

Dane and Mathis (1981) introduced an adaptive finite
difference scheme in which both the spatial and temporal
step sizes were allowed to be changed during the flow
problem solution process. This approach might give better

results but is more complicated.
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CHAPTER II1. MODEL DEVELOPMENT

Introduction

Mathematical models are extensively used in the science
of hydrology. Groundwater management has relied heavily on
the simulation model study. A model i{s defined as a
simplified representation of the real system for some
purposes. A model includes those features of the rcal
system that are essential for the purpose of the model and
it leaves out those that are not essential. Simulation is a
technique of constructing and running a model of a real
system in order to study its behaviors. A deterministic
model has no random variables and for a glven input it
always produces the same output. A stochastic model has
random variables which may be represented by some
probability distribution. For a given input, a stochastic
model will produce different outputs.

In this study, a stochastic model has been developed to
predict the variation of pressure head, water content, and
water table elevation under transient field conditions in a
saturated-unsaturated soil. The Monte Carlo method is used
to simulate a large number of equally probable and spatially
correlated values of saturated hydraulic conductivity that
can be used as inputs to the flow model. The results from

the Monte Carlo simulations can be analyzed using standard
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statistical routines.

In developing this model, several coriteria were
considered. First, the hysteretic property of the soil
water retention relationship and the stochastic properties
of soil water parameters were to be considered. Secondly,
the model was to be designed to require data that were
generally available for a watershed. Thirdly, the model was
developed in a way that it can be easily modified by
inserting or changing any component without major revision

of the entire model.

Model objective

The major objective of the development of this model
was to solve the equation of moisture flow {n the
unsaturated-saturated zone. The model should be able to
predict the mean and variance of the outputs, namely, water
table elevation and pressure head. The model should also
allow consideration of nonhomogenecus layered geclogic
formations, and should analyze transient flow conditions

with the model upper boundary at the ground surface.

Assumptions
Assumptions underlying the development of any model are
very important in understanding and applying that model.

The following were major assumptions underlying the
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development of the present stoohastic water transport model.

1. The flow system was considered continuous
throughout the saturated-unsaturated zonej;

2. The porous medium was comprised of nondeformable
particles;

3. Water flow could be described by Darcy's law, that
is, the flow was laminar;

k., No water quality variable or electrochemical
effects were considered;

5. The effects of temperature gradients, osmotic
gradients and other minor gradients on water flow were
neglected;

6. Water vapor transport was not conslidered;

7. The effect of temperature on the hydraulic
conductivity was ignored, that is, the effect of temperature

on the density and viscosity of water was neglected; and

8. The hydraulic conductivity of the soil water was
considered significantly stochastic, while the other soil

water properties were considered nonsignificantly stochastic.

Finite Difference Equation
The governing flow equation (2.13) and the boundary
conditions must be changed into the form of a finite
difference equation in order to apply the solution scheme.

The governing equation (2.13) can be rewritten by simply
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expanding the right hand side.

3in

+1)+K 337 * S(z,t) (3.1)

eh oK Jh
¢ =52 | 32

at

An implicit finite difference solution method, known as
Douglas-Jones predictor-corrector method, was selected for
use to solve Eq. (3.1) numerically. In the predictor stage,
the main objective is to estimate the coefficients C and K
for the corrector stage. The values of pressure head at the
half time step are computed using the values of C and K of
the previous time step. The values of C and K for the half
time step are determined from the pressure head solution at
the half time step. 1In the corrector stage, the pressure
head solution |s obtained using the C and K values from the
predictor step or the half time step.

The finite difference equation for the predictor step

takes the form:

R - n? k0, - kD n?,, - n}
YR XY 203 25z

nely  oonth | neY
ok hiZy =2hy ° + holy
I (az)?

) + §(z,t) (3-2)

The corrector follows the predictor with the form:
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cg+& ) » RN 3+12 -1 ) ( j+12 -1 +1)
t Az Az
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RS S W 1 WL 5 W i £

J 2(Az)? 2(Az)?

) +8(z,t)(3.3)
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where }

space step index,

n

time step index,

At = size of time step, and

4z = size of space step in the z-direction.
The superscripts in Eqs. (3.2) and (3.3) represent the time
step and the subscripts represent the spatial location.
Eqs. (3.2) and (3.3) are general equations for the
intermediate (internal) nodal pcints. Both Eqs. (3.2) and

(3.3) can be reduced to the general form:
Aghy_) + Bjhy 4 Cihy ) = D, (3.4)
Eqs. (3.2) and (3.3) must be modified to incorporate
the boundary conditions. To incorporate a flux boundary
condition in the finite difference equations, imaginary
nodes are introduced at jJ s 0 and J = n+1 as shown on Figure

5. The flux condition at the bottom boundary (jz1) can be

expressed as:

n+d o nék

25z

- ]

+1) (3.5)

for the predictor, and

p+l _ pntl

- Y (2 0 _41) (3.6)
24z

for the corrector, where q1 is the water flux across the

lower boundary. Solving Eqs. (3.5) and (3.6) for the
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Figure 5. Flow system discretization including imaginary
points
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imaginary point, ho, and substituting into Eqs. (3.2) and

(3.3), respectively, the following are obtained for node 1

at the lower boundary:

n+y n n _ n n+k
ah oM K2 -5 9
h A—21 . ) (= =—)
Kot Az Kl
RIS _ L a4 a2 gPTKD
» 2k0 [ -2 1 1 1) 4s(z,t) (3.7)
1 (s2)?
for the predictor, and
Cn+5 hn+1 - hg xg+5 - x?#a q?+l
A1y ) (= =g )
At Az x?
h"*l My sz v 82 g *113“*5
n+d 1 1
+ “1 |
(az)?
hg - h] + 82 + Az qlﬂlx1
+ ] + 8(z,t) (3.8)

(az)?
for the corrector.
Equations for the upper boundary can be obtained by
following the same procedures. The flux condition at the
soil surface boundary can be expressed as:

+ n+
n+s b“ % b %

= - K? ( 1,1) (3.9)
qn n 2Az

for the predictor, and
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a1 o nn+l
gl a it (ml_n-l (3.10)
2A2

for the corrector. Combining Eqs. (3.2) and (3.9), and Eqs.
(3.3) and (3.10), the following were obtained for node n at

the soil surface:

n+y _ . n n_ .n n+hy
e hn by = ( Xn = Kpna ) (= D)
(n n
y At Az K,

S I h:’* - 8z - 8z Q"D

+ 2P 2=l — D) 4 s(z,t)(3.11)
z
for the predictor, and
ntl _ . n n+ly _ nvh n+l
n At 8z Kp? ]

n+l _ . n+l - n+l, n+h
N Kn*ﬁ ‘ ho.1 - M, Az ~ Az q /K,
n

(Az)?
h® .- W - Az - Az ”+1/R"+§
s A=l n — n B ) 48(2,t) (3.12)
z

for the ceorrector.

In order to incorporate the upper and lower boundary
conditions requires the flux across these boundaries to be
known at all time periods. The upper boundary (soil

surface) flux can be determined using infiltration equations
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(during rainfall events) and soil evaporation estimates.
The lower boundary flux is not as easy to determine and is
often used as a calibration parameter.

Eqs. (3.2), (3.7) and (3.11) for the predictor stage
and Eqs. (3.3), (3.8) and (3.12) for the corrector stage

lead in sach stage to a set of linear equations of the form:

8, € 1» ] oy |
A, B, C, 0 h, D,
Ay By G hy Dy
coe = r={ 1} (3.13)
0 An-lan-lc“"l hn-l Ph-1
| S L

where h1 denotes the unknown pressure head and the other
variables can be determined from given information. This
tridiagonal matrix is diagonally dominant and can be solved
by standard numerical techniques. The Thomas algorithm is
recognized as being one of the most efficient in this

respect (Remson et al., 1971) and was incorporated in this

model.

Model Components

The major processes included in this model were soil

water movement, infiltration, evapotranspiration, and deep
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percolation. The main computer program was designed to
control the general sequence and to call each process
subprogram in its logical sequence. The computer program
was designed using a modular system so as to allow easy
modification by changing or inserting any system subprogram
without affecting the general flow system. The flowchart of
the main program is shown in Figure 6, and the description

of subprograms is listed in Table 3.

Solution of flow equation

The major portion of this program is the subroutine
FLOW which solves the finite difference equations developed
in the previous section. The Douglas-Jones predictor-
corrector method was used in this subprogram. FLOW sets up
a tridiagonal system of equations with the computed specific
water capacity and conductivity values. This tridiagonal
matrix is solved by calling TRIDIA and the pressure head
solution will be obtained. From the pressure head solution,
FLOW determines wetting history, water content, specific

water capacity and hydraulic conductivity by calling HYSTER,
RETENT, and CONDUC, respectively.

The top boundary condition was not simple to handle.
Traditionally, the top boundary condition has been specified
a3 a value of water content or pressure head at the soil

surface and iterating until the computed flux was acceptably
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DATA INPUT

CALL PANEVP

CALL PLANT

CALL PRECIP

o BEGIN A NEW MONTE CARLO RUN

INITIALIZATION

CALL NEIBOR

—8] BEGIK A NEW DAY

Figure 6.

RAIN > O>-L28 CALL INTCEP
no
———d{ BEGIN A NEW TIME STEP
| CALL INFILT

Plowchart of the main computer program
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[ cALL FLOW

SELECTED
JIME S

no

yos

CALL TRIDIA

CALL HYSTER

CALL RETENT

CALL CONDUC

CALL WTABLE

CALL BALANS

Figure 6 (Continued)
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Table 3. Description of subprograms

Name Description

BALANS Computes water storage difference in the flow
domain between, (1) from initial storage and
boundary fluxes, and (2) from current water
content in the soil profile

CONDUC Computes hydraulic conductivity and specific
water capacity

ET Computes actual soil evaporation and plant
transpiration

FLOW Sets up and solves flow equations and computes
coefficlents of flow equations by calling
subprograns

GGNML IMSL 1library subroutine which generates normally

distributed random numbers with mean zero and
standard deviation one

HYSTER Updates wetting history and computes water
content evaluated at the wetting reversal
value of pressure head on the main wetting
curve

INFILT Computes infiltration rate using modified
Holtan's equation with Bailey's f{teration method

INTCEP Computes initial abstraction of a rainfall and
determines amount of rainfall excess during a
time step

NEIBOR Computes stochastic saturated hydraulic
conductivity distribution using first order
nearest neighbor model

PANEVP Computes hourly distributed potential evapo-
transpiration rates from the daily pan
evaporation data

PLANT Computes plant root density distribution and crop
leaf area index



58

Table 3 (Continued)

Name Description

PRECIP Computes average rainfall amount during a time
step before initial abstraction

RETENT Computes water content for a given pressure head
and wetting history using Mualem's model

TRIDIA Solves tridiagonal matrix prodlems

WTABLE Computes water table depth from soil surface at

a given time
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close to the potential flux value. An alternative approach,
introduced by Gilding (1983), did not need to iterate.
First, the potential flux at the boundary was imposed in the
flow equation and the system of equations was solved. Then,
a check was made to determine whether or not the computed
pressure head at the soil surface lies within the range of
the predetermined maximum and minimum pressure head. If it
does, this gives the desired solution. If the computed soil
surface pressure head was not acoceptable, the surface
preasure head must take the violating maximum or minimum
value, and the required solution is found by imposing this
maximum or minimum pressure head as boundary condition. By
indexing the nodal points increasing upwards as shown on
Figure 5, the computation can be performed without any
repetition. Applying the Thomas algorithm to solve the
tridiagonal matrix given as Eq. (3.13), the top boundary
pressure head solution can be checked immediately before the
back substitution stage of the algorithm. Therefore, even
if the value is set to the limiting constraint, this change
does not affect anything already computed.

The actual surface flux can be computed from Eqs. (3.9)
and (3.10) when the surface boundary has the limiting
values. Pressure head at the imaginary point in Bqs. (3.9)
and (3.10) can be computed from Eqs. (3.2) and (3.3) using

the pressure head solutions for the real nodal points.
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Hysteretic model
For the purpose of simulation of the flow model, a

representation of the hysteretic soil water wetting-drying
process is needed. Many empirical based analytical forms
for the isothermal soil moisture characteristic have been
proposed.

A series of papers (Mualem, 1973, 1974, 1977; Mualem
and Dagan, 1975) has described a set of models which may be
used to approximate the hysteresis in the soil water
retention process. These conceptual models account for the
capillary hysteresis effect discussed in the previous
chapter. In his papers, Mualem hypothesized that a porous
medium could be modeled as a continuous set of pore groups.
Each pore group is defined by r, the radius of the pore
opening in the group, and p, the radius of the pores in the
group. The relative value of the medium occupied by a pore
group is given by the distribution function f(r,p). That
is, f(r,p) dr dp, is the proportion of the bulk medium
occupied by the pore group having opening sizes between r
and r+dr and having pore radii between p and p+#dp. Mualem

normalized r and p by defining:

F = ¥ - Ryin (3. 18)
- E .
B’max min
p - R
e e Din (3.15)
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where R = a parameter defined as R = C/h, where C is a
constant and h {s pressure head.

The radii r and p change in the range from zero to one,

under the assumption that both r and p vary between Rmdn and

“max’ which correspond to hmin and hmax’ respectively.

Then, the behavior of a pore is taken to be fully defined by

f(r,p) and is independent of the states of the surrounding

pores. This is called an "independent .domain model.”

The volumetric water content of the medium is obtained
at any time by integrating the pore group distribution
function over the portion of the unit square in r-p space
that corresponds to the wetted pores. The extent of this
region defines the wetting history of the medium. Mualem's
diagrams for main wetting and drying processes as well as
primary and higher order processes are shown on Figures 7
and 8. The shaded area represents saturated pores.

The proceas of wetting is defined by an increase in the
radius of the ajr-water interface. 1In the main wetting
process (Figure 7a), when the capillary head changes from
h(R) to h(R+dR), all the pores with radii § between R and
R+dR are wetted. In the main drying process (Pigure 7b),
when h reduces from h(R) to h(R-dR), the groups with pore
radii p between R and R-dR and with opening radii r less
than R are emptied.

Any subsequent reversals result in a more complex
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The filled pore diagrams in the r, p plane for
the main processes: (a) main wetting,
(b) main drying (after Mualem, 1978)

Figure 8.

The filled pore diagrams in the ;, p plane for
the scanning processes: (a) primary drying,
(b) primary wetting, (c) wetting after six

processes of imbibition and drainage
(after Mualem, 1974)
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situation. Figure 8 shows how the primary scanning curve
and higher order scanning curve appear on the Mualenm's
diagram.

Mualem (1974) assumed that the pore group distribution
function may be represented as a product of two independent
functions as:

£(6, T) = &(p) mlr) (3.16)
Eq. (3.16) constitutes the similarity hypothesis which says
that the pores of any group are distributed according to the
same distribution function.

The use of a conceptual model based on a capillary
model of molsture retention to predict the behavior of
hysteresis in the adsorption regime is open to question
(Milly and Eagleson, 1980). However, Mualem (1977) found
his model to be very good for pF up to 6, the highest value
with which he worked.

In this study, Mualem'’s conceptual model was adopted
with some modification for the higher order scanning curves.
The water content for any retention process can be

determined by integrating Eq. (3.16) over the filled pore

domain. Ag a matter of convenience, @ is defined as:

6(h) = 8(h) - 0 (3.17)

L]

where &(h)
a(h)

effective water content,

actual water content, and

1]
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et z= residual water content, which is the minimum
water content value at which d6/dh approaches
zero on a retention ocurve.

Mualem (1974) developed hysteretic water retention
models for the primary and higher order scanning curves by
integrating Eq. (3.16), and expressing the results in terms
of two main curves. For the primary drying curve (Figure
8a):

6,(h,) - @,h

6l "1 ) = 6, h) v =6 | 8th) - 8, |
(3.18)
For the primary wetting curve (Figure 8b):
h h - 6,h)
6 max h ) = §,(h) + m [ 84(hy) - 6,(h,) ]
(3.19)

where 8(hmi h1 h) s effective water content at pressure
" head h after pressure head increased from
hain 10 M (wetting) and then decreased to
h (drying),
G&(h) z effective water content at pressure (suction)
head h on the main wetting curve,
Gk(h) z effective water content at pressure head h
on the main drying curve,
G;(hl) s effective water content at wetting reversal

pressure head hl on the main wetting curve,
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Gh(hl) = effective water content at wetting reversal
pressure head hl on the main drying curve, and
6, = effective water content at saturation.

The relationship of Eqs. (3.18) and (3.19) are
graphically {llustrated or Figures 9a and 9b, where point 1
represents the wetting reversal point.

For the higher order scanning curves, which occur after
a series of alternating processes of drainage and
imbibition, water content can be determined by the same
manner, applying integration from the Mualem's diagram using
Eq. (3.16). However, the higher order scanning curves will
introduce many operational problems as a results of the
large number of variables. Therefore, simple models were
developed from the equations for the primary curves by
analogy.

For the higher order drying curves, 3&‘"1’ in Bq.

(3.18) can simply be replaced by O(hl) by assuming that the

higher order drying curves can be regarded as primary curves

and can be extended vertically downward from the wetting

reversal point to the main wetting curve as shown on Figure

9¢c. Then, for the higher order drying curves:

&(h,) - 6,(h)
e, -6,

h = -
e..." ) =@,m + [@4(h) - @,(h) ) (3.20)

where GK...h1 h) = effective water content at pressure head

h after a series of drainage and
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Primary and higher order scanning curves
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imbibition and lastly pressure head
decreased from hl to h, and
6(hy) = effective water content at the wetting

reversal pressure head hl‘
For the higher order wetting curves, ed(hl) in Eq. (3.19)
can be replaced by O(hl) by assuming that an imaginary main
drying curve (dashed line in Figure 9d) passes through the
wetting reversal point 1 on Figure 9d. Then, for the higher

order wetting curve:

e, - 6,
oL, M =0, m v GhogiEy 10y -6, n) 1(3.2D)

u

where O(...hl h) s effective water content at pressure head
h after a series of drainage and
imbibition and lastly pressure head
increased from hl to h.

Eqs. (3.18) to (3.21) are expressed in terms of two main

curves. Preliminary study showed that these simplified

models for the higher order scanning curves gave good

results.

In a subsequent paper (Mualem, 1977), Mualem proposed
an extended similarity hypothesis by assuming that the pore
group distribution function may be represented by a one-
variable function instead of a two-variable unknown function
as:

£(p, T) = L(p) L(T) (3.22)
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Using Eq. (3.22), Mualem showed that a universal hysteresis
function can be derived. On the basis of one main curve,
the other main curve and all scanning curves can be defined.
The advantage of this model is that it greatly reduces the
information necessary to define fully the water retention
behavior of a soil. PFrom this extended similarity

hypothesis, the relationship between the two main curves can

be derived as:

. y
6,(h =6, - (6,06, -6 )] (3.23)

and

@M = 12-6,m 6,1 6,m (3.24)

By introducing either Eqs. (3.23) or (3.28) into Eqs. (3.18)
to (3.21) the scanning curves can be expressed in terms of
either one of the main curves. To express in terms of the
main wetting curve, substitute Bq. (3.24) into Eqs. (3.18)

and (3.19) for the primary curves:

h -1
o, 1) =6, +6,m 6 [6,h) -6,m ]

(3.25)
o"max ., P =@.(n) +@.h) [ 1-6"16.(n 6
hl W w 1 11 w (3.26)

Now, Eqs. (3.23) to (3.206) can be expressed in terms of

water content instead of effective water content by
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substituting Eq. (3.17) into them:
b
6,(h) =6 - [ (6, - 86)) (8, = 84(h)) ) (3.27)

20, - 6_ - 0 (h)

Bqth) = 8 + (8 N 1 (3.28)
Y ) = 8,(n) + [ -éfl-l-§£ ) 1 6,thy) = 6, (h) )
- + -
hmin h u 4 1
(3.29)
h 6 - 6 th)
0 'max )y = o, + [ 6—-——;—-—- 1 L8 thy) =0 )
(3.30)

Eqs. (3.27) and (3.28) are the relationships between the two
main curves. Eqs. (3.29) and (3.30) are for the primary
drying and wetting curves, respectively. The higher order
wetting curves are obtained by substituting Eq. (3.17) into
(3.21) as follows:

9, ~ 8,(h)

(... )aa""*le'a(h)l[&(hl)-e(hl)l

hy

(3.31)
For the higher order drying curvca.'zq. (3.30) can be used
by simply replacing 6_(h;) by 8(h,;).
In the computer programming, an approximate approach
was used in determining wetting reversal points. The
wetting history is spatially continuous and the wetting

reversal occurs instantaneously between time steps. In the

present model, however, a wetting reversal was assumed to
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oocur at any time step n at any node j when the water
content at the node at the time step n is greater (less)
than the water content at the time step n-1, where the node
was previously drying (wetting). Then, the wetting reversal
actually computed will precede the adoption of a new
scanning curve by one time step.

This lag of wetting reversal can be removed by adopting
a more rigorous procedure. But, considering the lmprovement
of the accuracy of the model and the required efforts to
implement the more rigorous procedure, it was declded not to

adopt this rigorous procedure at this time.

Water content-pressure head relationship
The determination of the water content-pressure head

relationship for a soil requires extensive field or
léboratory measurements. For the field determination,
several tensiometers at various depths and a neutron probe
can be used for the pressure head and moisture content
measurement, respectively. A neutron probe i{s very
convenient since measurements can be read directly from the
scaler and the corresponding water content found from a
calibration curve. Other methods for determining water
content were described in the previous chapter.

Laboratory determination of the water content-pressure

head relationship has been widely used. A tension table or
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pressure chamber is used for the determination of the soil
water characteristic curve. The maximum tension attainable
by a tension tadble is below 1 dbar while the maximum tension
attainable by a pressure chamber is below 20 dbar, depending
on the design of the chamber.

In determining soil water characteristic curves, the
drying curve is measured by gradually extracting water from
an initially saturated sample. This drying curve is
applicable to the drying process such as drainage or
evaporation. On the other hand, the wetting curve is needed
whenever the wetting processes are concerned. For complete
description of soil water retention curve, these two main
curves and other scanning patterns at the wetting reversal
are needed. Generally, the main drying curve is determined
in the laboratory since the desorption method is easy to
perform. The main wetting curve and the scanning curves can
be calculated from the main drying curve by using Mualem's
conceptual hysteresis model as discussed in the previous
section.

Linear interpolation, cubic spline interpolation, or
nonlinear regression models can be used to express
mathematically the retention curve. The use of a regression
equation is convenient because for a given value of the
independent variable the value of the dependent variable is

determined directly from the equation. In this study, the
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same nonlinear parameters for the retention curve were used
in the relative hydraulic conductivity model. Eq. (2.19) is
used for the retention curve. Substituting effective
saturation, Se’ which was defined in Eq. (2.18), into Egq.
(2.19) gives:
1 1-§

9'&:-*‘6:'&:)(""—!31*(“‘) } (3.32)
Retention data for the main drying curve, which were
obtained from the laboratory measurement and Fritton et al.
(1970) as shown in Appendix B, were used to determine the
nonlinear regression parameters a, N and 0. in Bq. (3.32).
Those parameters were also used for the relative hydraulic
conductivity model Eq. (2.20). MNonlinear parameters for the
main wetting curve were determined from the retention data
generated by Eq. (3.27) from the main drying data with the
assumption that the residual water content is the same for
the two curves. Fitted parameter values for the two main
curves are included in Table 6. Figure 10 shows the fitted
main retention curves using data from both laboratory
measurements and Fritton et al. (1970) for a Webster silty

clay loam,

Hydraulic conductivity and specific water capacity
The determination of hydraulic conductivity and

specific water capacity for a given pressure head and water
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Figure 10. Main retention curves for Webster silty

clay loam
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content was done using the model developed by Van Genuchten
(1980). Eq. (2.20) will be used to compute relative
hydraulic conductivity for a given pressure head. However,
the equation does not consider soil water hysteresis.
Consequently, an additional consideration should be given
for the hysteretic model. Two sets of nonlinear regression
parameter values (one for drying and one for wetting) for
the main curves were determined as explained in the previous
section.

The generalized specific water capacity, C in Eq.
(2.13), is either the slope of 6-h curve for the unsaturated
zone or specific storage, S.. for the saturated zone. The
specific water capacity in the unsaturated zone was
determined by differentiating Eq. (3.32). That is:

o - N/N-1

Ba-@-0)101- (=520  MIhi3.39)

For a given value of h and 0, the specific water
capacity and relative hydraulic conductivity for the
scanning curves were determined by adjusting the parameters
a and N by linear interpolation between the two main curves.
Preliminary studies indicated a linear interpolation of the
parameters a and N from the two main curves gave better
prediction of the relative conductivity and specific water
capacity than did linear interpolation of the relative

conductivity and specific water capacity themselves from the
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tvo main curves. Figure 11 shows the relative conductivity
as a function of water content for the main wetting and

drying curves for a Webster silty clay locam soil.

FPirst order nearest neighbor model

Smith (1978), Smith and Freeze (1979a,b), and Smith and
Schwartz (1980) used a nearest neighbor model in their
stochastic analysis of saturated steady groundwater flow.
The flow domain was divided into a finite set of discrete
blocks. Saturated hydraulic conductivity values in
neighboring blocks were autocorrelated by assuming that the
spatial variations in conductivity could be represented by a
first order nearest neighbor stochastic process model.
Another assumption was that the distribution of saturated
hydraulic conductivity values can be described by a
stochastic process that was statistically homogeneous or
stationary. Stochastic homogeneity requires that saturated
hydraulic conductivity has the same expected value at every
point in the domain and that the covariance between
hydraulic conductivity at any two points depends only on the
vector separating those points and not on their absolute
position. The nearest neighbor model was designed to model
spatial variations in a statistically homogeneous random
field in which the stochastic dependence is local. It can

be regarded as an autoregressive time series model extended
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silty clay loam
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into a spatial domain.

By dividing the flow domain into a set of square blocks
for a two-dimensional domain or into blocks or layers for a
one-dimensional domain, the correlation structure i{n the
medium can be represented by an nth order nearest neighbor
stochastic process model (Bartlett, 1975), where n is the
number of blocks that are spatially correlated to a given
block. Conductivity values in the block system are related
through a simple linear equation expressing the dependence
of the conductivity in one block upon those in surrounding
blocks. 1In this study, only the saturated hydraulic
conductivity was considered as a stochastic variable.

Saturated hydraulic conductivity, K., has been found to
be log normally distributed (Willardson and Hurst, 1965;
Nielsen et al., 1973; Baker and Bouma, 1976), that is, if
Yzlog K, then Y is distributed as a normal probability
density function. Various possible values of saturated
hydraulic conductivity can be generated from the nearest
neighbor model in such a manner to preserve the spatial
correlations. For any block i in a one-dimensional domain,
the nearest neighbor model used was (Smith, 1978; Smith and
Freeze, 1979b):

Y, =Y ¥ Y0 +ne (3.38)
where Yi = random variable satisfying the nearest neighbor

relation,
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& = an autoregressive parameter,

€ = normally distributed random numbers with mean
zero and standard deviation one, and

n a2 a faotor multiplied to € to yield a

predetermined standard deviation ¢

y.

The autoregressive parameter, &, expresses the degree
of spatial dependence of Yi upon its neighboring values and
can be determined from field data. For one-dimensional

flow, n is given by:

- a’ a’p(2) %
n=o, [ §+1- 20001 + 242 (3.35)
where oy az predeternined standard deviation of ¥,

@ = an autoregressive parameter, and
p(1) and p(2) s spatial autocorrelation coefficients
for lag 1 and 2, respectively.

Autocorrelation functions can be obtained from each of the
realizations generated during a Monte Carlo simulation.
Smith and Preeze (1979a) show a change of autocorrelation
function with respect to the values of autoregressive
parameter as shown in Figure 12.

Prom Eq. (3.34), one equation was obtained for each
block located in the domain. For boundary blocks, Eq.
(3.34) was changed accordingly. This resulted in a set of n
simultapeous linear equations that needed to be solved for

log saturated hydraulic conductivity at each layer or block.
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Figure 12. Effect of the autoregressive parameter (a) on
the autocorrelation function, one-dimensional
model (after Smith and Freeze, 1979a)

A saturated conductivity realization is generated by first
selecting n independent values of €y Then, compute p from
known cy and p. Next, the system of equations is solved for
the values of Yi. vielding an internally correlated sequence
of random variables satisfying the nearest neighbdor
relation. At this time, !i has mean zero and standard
deviation oy. Therefore, the mean ”y must be added to each
Yi to produce a realization that was normally distributed
with mean uy. Finally, an exponential transformation was
applied to obtain the saturated hydraulic conductivity for
each block in a soil layer.

In this study, no hydraulic conductivity field data
were available to determine the autoregressive parameter in

Eq. (3.34). Therefore, a value of 0.35 was chosen from the
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previous study by Smith (1978) considering the soil type in
the study area. The autocorrelation ccefficients for lag 1
and 2 were determined from Figure 12 by extrapolation.

The nearest neighbor model discussed is only for a
statistically homogeneous flow domain. Therefore, if a flow
domain is composed of a statistically nonhomogeneous layered
geologic formation, each statistically homogeneous soil
layer should be treated individually. In this case, there
must be some correlation between the two blocks across the
adjacent geologic soil layer interface because according to
Bennion and Hope (1974) the field hydraulic conductivity was
continuously distributed even though a soil showed
statistical nonhomogeneity. However, no theory has been
introduced in this respect. So, each statistically
homogeneous soil layer was treated individually with no
correlation between the two blocks across the soil layer

interface in this study.

Monte Carlo simulation

The Monte Carlo method in stochastic groundwater
studies involves repetition of a number of simulations using
a mathematical model to have enough sets of outputs to
perform a statistical analysis.

In each Monte Carlo run, a different set of the

saturated hydraulic conductivities for all the nodal points
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in the discretized flow system was determined using the
first order nearest neighbor model. This model insures that
the mean, standard deviation, and spatial correlation found
in the field data were preserved in each Monte Carlo run.
With these hydraulic conductivity values, a Monte Carlo run
vas made using the mathematical flow model for the length of
the simulation period. The same procedure was repeated
until the required number of Monte Carlo runs were made.

All the sets of outputs from each Monte Carlo run were
then used to perform a statistical analysis to deteraine the

means and standard deviations of the output variables.

Initial and boundary conditions
In order to solve the boundary value problem, two

conditions were needed, namely initial and boundary
conditions. The initial values of pressure head or water
content at the beginning of the simulation period must be
specified over the system domain. 1In addition, wetting
history information must be given for a hysteretic model.
Two boundary conditions, top and bottom, were needed
for the one-dimensional vertical flow problem. Top boundary
condition was specified on the soil surface. Infiltration

or evaporation was the major component of the top boundary

flux across the soil surface. The following assumptions

were made with respect to the top boundary flux:
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1. The soil surface is near horizontal, and the
moisture fluxes are normal to the surface.

2. Excess rainfall will be stored on the soil surface
up to a maximum detention capacity and further excess will
be discharged as surface runoff.

3. No lateral inflow on the soil surface into the
system exists.

With these assumptions various boundary condition
states can be defined as results of different rainfall and
evaporation intensities. These states of the soil surface
are:

1. At the beginning of a rainfall assuming the soil
surface is not saturated, infiltration begins at the
rainfall intensity with no surface retention or runoff.
This state was the unsaturated infiltration state.

2. As rainfall continues beyond some critical time
period, the soil surface reaches saturation, and the
infiltration decreases. This was defined as the saturated
infiltration state.

3. As rainfall continues, surface retention occurs
followed by surface runoff beyond the retention capacity.

4. When rainfall ends, the retained water was depleted
by evaporation and infiltration. Water infiltrates as long
as there existed detention water on the soil surface. When

the water on the soil surface was completely depleted, the
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surface flux was only from evaporation. This was defined as
the evaporation state.

All the states do not ocour for all meteorological
conditions, but depend upon the rainfall duration and
intensity. The infiltration and evaporation will be
discussed more in the following sqctions. .

The bottom boundary flux condition was determined
during the model calibration process. A fixed value of
bottom boundary flux was used throughout the simulation

period.

Precipitation
Published weather data generally give daily or hourly

kaintall amounts. Incremental rainfall data can be obtained
easily by installing a recording rain gauge on an
experimental site. The precipitation data used in this
model include the rainfall amount, and the beginning and
ending time of the rainfall. These rainfall periods were
then subdivided into several subperiods such that the
rainfall intensity in a subperiod was nearly constant. That
is, the subperiods were determined from changes of slope on
a rain gauge mass curve chart.

The input data were the amount of rainfall, starting
time and ending time of each subperiod. T7The subprogram

PRECIP computes rainfall amount in each time step (0.2 hr).
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If no rainfall exists for a day all the incremental rainfall

amount was set to zero.

Interception
A simple interception sudbprogram was included in this

model. During a rainfall event, water was intercepted by
plants. Part of the intercepted water may flow down to the
soil surface along the plant stem. However, the flow along
the plant stem was not considered in this model.

The interception storage is a function of crop type and
crop leaf area. 1In this study, the maximum potential
interception storage was determined as a linear function of
crop leaf area index (CLAI) for CLAI less than or equal to 3
following Anderson (1975):

INTCEP s 0.038%CLAI (3.36)
where INTCEP = potential interception in om.

Infiltration

Holtan's infiltration equation (Holtan, 1961) modified
by Huggins and Monke (1968) was used in this model. This
method was successfully used in watershed modeling by DeBoer
(1969) and Anderson (1975). A computer program by Anderson
(1975) was incorporated in this model with minor changes.

The main advantages of the modified Holtan's infiltration
equation are the ability to determine infiltration during
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periods of intermittent water supply, to predict

infiltration recovery during dry periods, and the ease of

computation. The modified Holtan's equation used was:

The
decrease

function

cover and rainfall intensity.

- .P

£+ a0 S5E (3.37)

= average infiltration capacity during a time

period, om/hr.

wet soil infiltration capacity, om/hr.

soll water storage potential above any impeding
strata, om.

accumulated infiltration, om.

total pore volume above any impeding strata, onm.
a soil parameter representing the maximum
potential increase of infiltration capacity
above the wet soil value, cm/hr, and

a soil parameter representing the steepness of
the slope of the infiltration capacity curve at
the beginning of the infiltration process.

initial infiltration capacity and the rate of
of infiltration capacity during a rainfall are a

of soil type, antecedent moisture content, plant

The parameters A and P in Eq.

(3.37) were adjusted based on the antecedent moisture

content in the top 15 cm soil layer just before the first

rainfall event in a day. The function used for estimating
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the parameter A was:

ASOIL = ASOILM * EBXP(AM (AMC-FCS)) (3.38)
where ASOIL = adjusted parameter A,
ASOILM = maximum value of ASOIL,

AM = fitted parameter to be determined,

AMC 2 antecedent moisture content in top 15 om soil
layer, %, and

FCS = field capacity of the top soil layer, %.

To consider the effect of crop growth on infiltration
capacity, one half of the crop leaf area index for CLAI less
than or equal to 3 was added to the adjusted ASOIL.

The function used for estimating the parameter P was:

PSOIL = PSOILM ® (AMC/FCP)®*pPM (3.39)
where PSOIL = adjusted parameter P,

PSOILM = PSOIL value for AMC equal to field capacity
of top 15 cm soil layer, %,
FCP s field capacity of top 15 om soil layer, and
PM = exponential parameter to be determined.

The effect of rainfall intensity on infiltration was
estimated by using the rainfall kinetic energy.

Infiltration capacity reduces exponentially with increasing
rainfall kinetic energy (Moldenhauer and Kemper, 1969).
This reduction is primarily due to the compacting effect of
rainfall kinetic energy, destruction of soil structure and

consequent soil dispersion, and the blocking of pores by
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fine soil particles. The equation used to estimate the
reduction factor, which was called rainfall energy factor
(REF), was:

-CE2
REF 2 CE1 ® SRKE (3.40)

where SRKE az summation of rainfall kinetic energy from the
time of tillage, Joules/oaz, and
CE1, CE2 = constants to be determined.
The rainfall energy factor varies between O and 1. Rainfall
kinetic energy for each time period was calculated following
Wischmeier and Smith (1978):
RKE = DDP (0.06133 + 0.02216 Log DINT) (3.81)
where RKE s rainfall kinetic energy during the calculation
period, Joulea/clz,
DDP = amount of direct rainfall after interception
during the calculation period, in., and

DINT = intensity of rainfall during the calculation

period, in/hr.

The computational procedure used to determine the
infiltration capacity was adopted from Holtan et al. (1967).
First, set up an inequality:

-5 1

=g s+ £) (3.42)
Substitute Eq. (3.37) into Eq. (3.42) and rearranging to

obtain:
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U

(3.43)
Eq. (3.43) is solved by a numerical iteration method to

determine the maximum possibdble Fz at the end of a time
period from a known starting value Fl. Either Newton's
method or Baliley's method can be used for the iterative
solution of Eq. (3.43). The Newton's method has quadratic
convergence while Bailey's method has cubic convergence
(McCalla, 1967). Bailey's method is:
£y
;?rg) £ (r3)
21 (P))

A A (3.44)

£ (ry -

where superscript n is an iteration step, and primes are
first and second derivatives. Eq. (3.44) can be derived
from the truncated Taylor series expansion. Details can be
found in McCalla (1967). DeBoer (1969) showed that Bailey's
method was the most efficient among several iterative
methods he compared. Baliley's method was adopted in this
study.

After surface saturation the excess water beyond
infiltration capacity was allowed to stay on the soil
surface as depression storage. When the maximum depression
storage was reached, the excess water was forced to runoff

and was removed from the system.
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Potential evapotranspiration
The potential evapotranspiration rate was calculated

from dally pan evaporation data. A regression equation for
brome grass developed by Saxton et al. (1974b) was used in
this study. The regression equation was:

PET = 0.025 + 0.83 * PAN (3.45)
where PET z dally potential evapotranspiration, cm, and

PAN = dally pan evaporation, cm.

The hourly distribution of the potential evapotranspiration
of each day cannot be determined exactly since no such data
were avallable. The distribution of daily potential
evapotranspiration was assumed following Anderson et al.
(1978). Six four-hour periods are used to distribute the
daily PET in such a way that:

Midnight to 4:00 a.m. s 2.4 % of daily PET

4:00 a.m. to 8:00 a.m. : 4.8 %

8:00 a.m. to 12300 noon s 29.0 %

12:00 noon to 43100 p.m. 3 39.7 %

4300 p.m. to 8:00 p.m. : 19.5 %

8:00 p.m. to midnight s h.6 %

Evapotranspiration

Actual evapotranspiration should be calculated from the
potential evapotranspiration. The method developed by
Saxton et al. (1974b) was used with some simplification.



90

The PET was divided into three parts. First, the PET energy
was used to evaporate interception storage. The remaining
PET energy was divided between potential soil evaporation
and potential transpiration according to a canopy shading
percentage. Ritchie (1972) related the fractional net
radiation at the soil surface and the crop leaf area index
for several different row crops. The relationship was:

Ras * Rpo " EXP (-0.398%CLAI) (3.46)
where R“. = net radiation at the soil surface (mm/day),

Rno  Net radiation above the crop canopy (mm/day),

CLAI = crop leaf area index.

Saxton et al. (1974b) gave calculated values of soil
evaporation, plant transpiration and root density
distribution for corn and brome grass.

Actual soil evaporation was assumed to occur only in
the top 15 cm of sofil. Actual soil evaporation was reduced
from the potential value by the relationship of
actual/potential evaporation ratio versus soil moisture
content in the top 15 cm of soil. Figure 13, which is
simplified from Saxton et al. (1974b), shows this
relationship used in this study.

Potential transpiration should be distributed in the
root depth after considering the plants’ phenological state
which depicts their ability to transpire. Plant root

density distribution was used to assign a percentage of
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Figure 13. Relation used to calculate actual evaporation
developed from data on loess aoils near
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Figure 14. Relation used to calculate actual
transpiration developed from data on loess
soils near Treynor, lowa
(Saxton et al., 1974b)
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potential transpiration to each nodal point in the
discretized flow domain. Potential transpiration was
reduced according to the moisture availadbility. The
actual/potential transpiration ratio depends upon the soil
moisture content and the total PET demand by the atmosphere.
A linear relationship simplified from Saxton et al. (1974d)
for PET value of 0.65 om/day for grass was developed as
shown in Figure 14. The unused energy in a layer was

transferred to the next lower soil layer.

Plant system
The plant system was considered in this model.

Infiltration and evapotranspiration components of the
hydrologic cycle are closely interrelated through the plant
system, since the amount of soil moisture stored in the root
zone affects both the infiltration rate and
evapotranspiration rate.

Crop canopy development, root system development, and
fraction of existing crop canopy which is actually
transpiring are three major factors which are important in
water balance model. Different values of these factors at
different stages of growth should be given to the model.

However, because of the short period of simulation length in

this model, a constant value for the crop canopy development

and the root system development with a total root depth of
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65 om were used for simplification. Additional subroutines
could be added at a later date.

Molz and Remson (1970) developed an equation for the
extraction pattern of plant roots by reasonably distributing
the total transpiration requirement as 40%, 30%, 20%, and
108, respectively to each successively deeper part of the

root zone. That was given by:

w<z)--l={’lz+-1—'ﬂ 0szsv (3.47)
v v

where W(z) = root extraction rate from a differential
volume,
Z = soll depth from which root extraction occurs,
v = total root zone depth, and
T = total transpiration.
Then, the total extraction rate from a volume of soil of
unit cross section bounded by horizontal planes z = zl and z

3 2, where 24 < 2, vas obtained by integration:

£t W(z) dg = - 16T ;’ %2 4 1.872|% (3.48)
% . v? 3, vz

Eq. (3.48) was used to distribute potential transpiration in
this model. Subprogram PLANT was called only once since a
constant root distribution and crop leaf area index were

used for the short simulation periocd in this model.
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Computer Progran
The numerical model described in this chapter has been
coded in the FORTRAN language for computer execution. The
WATFIV compiler was used on the AS/6 computer system at Iowa
State University. The computer program listing appears in

Appendix A.
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CHAPTER IV. CALIBRATION AND TEST OF THE MODEL

Introduction

The performance of a numerical model should be
evaluated to examine its validity because any numeriocal
scheme may introduce instability, truncation and round off
errors. A model is valid only if the approximate solution
is satisfactorily accurate or close to the exact solution if
one exists. The accuracy of a model can be more
specifically defined in terms of lts convergence and
stability.

Convergence is satisfied when the approximation
approaches the exact solution as step sizes of the spatial
and temporal discretization approach zero. A model is said
to be stable if the amplification of the error is restricted
or has a finite limit as computation marches forwards in
time.

The validity of a model can be tested by comparing the
numerical solution with either an analytical solution, if it
is available, or observed data.

In this chapter, the experimental plots, field and
laboratory measurement, calibration, and test of the model

are discussed.
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Description of the Experimental Plots

Field measurements were made on a farm located two
miles east and three miles north of Harcourt, Webster
County, Iowa. The reason for selecting the experimental
site near Harcourt was that there is a U.S. Geological
Survey observation well which has long term records of water
table elevation. This record gives the range of water table
fluctuation and can be used as a reference.

The experimental area is nearly flat, with a slope of 0
to 2 percent, and the soil in the area is classified as
Webster silty clay loam (Soil Conservation Service, 1975).
The experimental site was planted in grass meadow with
surrounding land planted in corn. The nearby farm land was
tile drained at about 1 meter below the soil surface.

Soil profile description of the study area was obtained
from field observation during the installation of the
instruments and from the Webster County scil survey (Soil
Conservation Service, 1975). 1In addition, the driller's log
for the U.S. Geological Survey observation well, located 37
meters southeast of the experimental plots, was available
and referenced in determining the soil profile description.
Table 4 shows the description of the soil profile of the
area.

The field experiment was composed of three plots, one

water table well, and one recording rain gauge. Each plot
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Tadble 4. Soil profile description of study area

Depth (om) Horizon Texture Deacription
0~ 20 “P Silty clay loam Blaok

20- 50 A Silty clay loanm Dark brown
50-100 B Clay loam Olive-gray

Gracial till

100-160 c Loam Light olive-gray
Gracial till

contained a 1.5 m deep aluminum neutron acceas tube and 8
tensiometers around the tube at depths of 10 cm to 150 om
with 20 om intervals. Two plots were used for measurements
of pressure head and water content for the natural weather
condition and the third plot was used for measurement of
infiltration rate by surface ponding. The water table well
was 8 1.8 m deep perforated plastic pipe with 3.8 cm
diameter. A standard 8" recording rain gauge was installed
near the plots. Figure 15 shows the layout of the

experimental site.

Field and Laboratory Measurements
Field measurements included precipitation, soil water
content, pressure head, and water table elevation. Three

runs were made in the ponding plot to measure infiltration

rates at different antecedent moisture contents. Field
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measurements were made for 7 weeks with two readings per
week. Rainfall data were colleoted from the recording rain
gauge. A portable pressure transducer was used to measure
the moisture tension (pressure head) in the tensiometers. A
neutron depth meter with scaler, manufactured by TROXLER,
was used to measure soil water content. However, because of
the availability of the neutron meter, and problem with its
operation, It could not be used after the initial
observations. Tensiometer readings gave consistent numbers
except for some readinga from the 10 cm and 30 cm depths
when the soil surface was very dry and cracks allowed air
entering into the soil near the porous cups. The water
table elevation was measured from the observation well
fnstalled.

The flow system domain included the top 160 om of soil.
It was selected considering the range of water table
fluctuation during the simulation period and the depth of
the tensiometers installed. The system domain was divided
into two layers considering the soil profile description in
the site. The top layer was 100 cm in thickness and the
bottom layer was 60 cm in thickness.

The laboratory measurements included porosity,
saturated hydraulic conductivity, water content of the soil
samples, and soil water retention. A falling head

permeameter described by Bouwer (1978) was used for
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conductivity measurements. Soil water retention for the
drying curve was determined using both a pressure funnel and
a pressure plate. The former measured tensions from 0 to
400 om of water and the latter up to 15 bar. Laboratory
setups in the soil physios lab at Iowa State University were
used for the retention measurements. Undisturbed soil
samples with 7.6 ocm diameter and 7.6 om depth were taken
from the field site using a undisturbed soil sampler.

Three soil samples were used to determine porosity after
the retention measurements were made. Dry bulk density of
the soil samples were determined by drying and weighing three

samples. The porosity was determined from the relationships

v e
v b

n- -1'— ‘1
Ve ®s (8.1

where "v z volume of the void,

<o
fn

volume of the total soil sample,

dry bulk density, and

o
-
]

N

density of soil particle, assumed to be 2.65.
Table 5 shows the average soil parameter values obtained
from the laboratory measurements. Although there were only
few data points, the standard deviations were determined for
the porosity, dry bulk density, and saturated hydraulic
conductivity in the top layer to be 0.05 cu3/cn3, 0.13

3

gr/cm™, and 0.19 cm/hr, respectively. The top layer has

larger porosity and smaller hydraulic conductivity than the
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Table 5. Soil water parameter values used in the model

Parameter Bottom layer Top layer
Depth from surface 100-160 om 0-100 oo
Porosity 0.48 om>/om3 0.52 om3/on>
Dry bulk density 1.378 ar!on3 1.272 grlcma
Saturated hydraulic 0.67 om/hr 0.58 cm/hr
conductivity

bottom layer does.

Data Availability

Water table elevation, soil water pressure head, and
precipitation were obtained directly from the field
measurements. Porosity, water content, saturated hydraulic
conductivity and soil water retention for the drying curve
were obtained from the laboratory measurements. No
evaporation data were available at the vicinity of the
experimental site, so, daily pan evaporation data from the
ISU Agronomy farm west of Ames, lowa, which was located
about 50 Km southeast from the site, were used.

Scoil water retention data for the Webster silty clay
loam were avajlable from FPritton et al. (1970) which were
considered together with laboratory data in determining

retention equation parameters.
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Calibration of the Model

Calibration is a process to adjust some of the
parameter values to fit the results of the mathematical
model with the measured values. Parameters which cannot be
determined or are hard to estimate can be approximated
through the calibration proocess.

Estimation of model parameters can be done either by
trial and error or by computerized search. A trial and
error method was applied in this study. Each parameter was
assigned an initial value and varied over a reasonable
range. The difference between the observed and computed
water table elevations and pressure head distribution for
each set of parameter values were compared. Thils procedure
was continued until the difference was within the
satisfactory range, and the parameter values for the minimum
difference were selected.

Data collected at the field site during the period July
21 to August 1, 1984, were used in the calibration process.
During this period, there were rainfall events and
fluctuating water table elevation. Calibrated values for
CE1 and CE2 in the rainfall energy factor equation (3.40) by
Shahghasemi (1980) were used. Table 6 shows the calibrated
parameter values. The stochastic property of the soil water
property was not introduced in the calibration stage.

The fluctuation in the simulated water table elevation
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Table 6. Parameter definitions and calibrated values as
used in the model
Parameter Parameter definition Calibrated value
s.' Specific storage of the 0.00010 om
unconfined aquifer
PLUX1' Boundary flux across the bottom 0.0010 om/hr
boundary
COND Wet soil infiltration capacity, 0.58 om/hr
l‘c in Eq. (3037)
DEPRES Maximum depression storage 1.0 om
ASOILM Maximum value of ASOIL in 36.0 om/hr
Bq. (3.38)
AM Exponential coefficient used -0.120
in ASOIL equation, Bq. (3.38)
PSOILM Value of PSOIL at the field 1.580
capacity of the tog 15 om soil
layer in Bq. (3.39
PHM Exponential coefficient used in 0.20
PSOIL equation, Bq. (3.39)
PCS Field capacity of top 15 cm soil 28.96%
layer in Bq. (3.38)
FCP Field capacity of top 15 cm soil 28.96%
layer in Eq. (3.39)
CE1 Coefficient in the rainfall energy 0.125
factor equation, Eq. (3.40)
CB2 Exponential coefficient in the 1.25
rainfall energy factor equation,
Eq. (3.40)
ALPA Autoregressive coefficient in 0.35

the nearest neighdbor model

%yaried during calibration run.
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Table 6 (Continued)

Parameter Parameter definition Calidbrated value
RRO1 Lag 1 sutoocorrelation coefficient 0.35
fn the neareat neighdor model
RHO2 Lag 2 autoocorrelation coefficient 0.1%
in the nearest neighbor model
ALPAD Pitted value of 'a’ for the main 0.00826

drying ocurve in Van Genuchten's
retention model

ALPAW Pitted value of 'a’ for the main 0.02515
wetting ocurve in Van Genuchten's
retention model

END Fitted value of 'N' for the main 1.3572
drying curve in Van Genuchten's
retention model

ENN Fitted value of 'N' for the main 1.5102
wetting curve in Van Genuchten'’a
retention model

THETAR Fitted value of residual water 0.1279
content in Van Genuohten'’s
retention model
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during the simulation period was compared with the observed
water table elevation. Figure 16 shows a plot of observed
and computed water table elevations. The water table rose
during the period July 26 to 28 as a result of rainfalls on
July 26 and 27. The decline in water table before July 26
and after July 28 were very close to each other and to that
observed. Figure 17 shows the observed and computed
pressure head distributions at selected times. They are
very close to each other for the soil depth greater than 50
cm. These comparisons show the numerical model developed

does approximate the field condition.

Test of the Model

Since an analytical solution of the flow in the
saturated-unsaturated zone was not available, it was not
possible to test the entire model against the analytical
solution. However, before testing the entire model with
calibrated parameters, it is better to test each segment of
the model against an analytical solution if one exists.
Therefore, each subprogram was tested and modifications were
made until satisfactory results were obtained. Having
established the validity of the various subprograms
independently, the entire model can be tested.

The test of the subprogram FLOW will be shown here for

an unsaturated flow problem. The infiltration problem using
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a Yolo light clay was solved by Philip (1957) using a
quasianalytical procedure. His classic example has since
been a standard agsinst which many subsequent solutions have
been compared (e.g., Haverkamp et al., 1977; Milly and
Eagleson, 1980). Only unsaturated flow was considered in
his study. The governing equation with z-coordinate

positive downward is:
P2 km -1 (4.2)

and with the following initial and boundary conditionas

h s «-600 cm ts0 0s z< 50 om

hs 0ocn t> 0 230
Since a semi-infinite medium was considered, the lower
boundary condition was not needed.

Haverkamp et al. (1977) have fitted a retention and
hydraulic conductivity equation from the data describing the

Yolo light clay. Those equations were:

6 = 0.124 + 274.2 h<-l cm (4.3)
739 + (lnjh])*

K(h) = K_ X 124.6 h<-1cm (8.4)
124.6 + |h}"*

For pressure heads h greater than or equal to -1 cm,
saturated water content of 0.495, and saturated hydraulic

conductivity of 1.23 x 10" om/sec were used.
The subroutine FLOW was used with Eqs. (4.3) and (4.4)
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to solve the infiltration problem. The computations were
made for a time period of 2 x 105 seconds using a time step
varying from 25 seconds (for short time) to 250 seconds (for
time > 5 x 10) and with a depth interval of 1 om. The
solution obtained using Eqs. (4.3) and (4.4) is plotted in
Figure 18 along with Philip's solution. The agreement with
Philip's quasianalytical solution was favorable.

After testing all the segments of the program, the
entire model was investigated to see if the model gave
reasonable results. The pressure head distridbutions at
various depths at selected times were checked. The pressure
head distributions in the soil profile before, during, and
after a rainfall event were investigated to see how the
pressure head distribution changes and the wetting front
advances during a rainfall. The pressure head distribution
appeared reasonable and showed no abrupt change across the
saturated-unsaturated interface. This confirms the
continuity theory in the incorporated saturated-unsaturated
flow. Figure 19 shows the change of pressure head
distribution during and after the rainfall event of July 26
(208 Julian day) when rainfall of 3.0 cm started at 3:00
a.m. and ended at 6:40 a.m. The changes of pressure head
distribution look reasonable.

The moisture balance in the flow domain was checked at

the selected time steps. The change of moisture amount in
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the flow domain was compared with the boundary inflow and
outflow. The difference between the two was less than 4%

throughout the simulation period.

Evaluation of the Stochastic Model

With the satisfaotory results of the model test, the
stochastic property of the hydraulic conductivity was
introduced into the model by assigning a nonzero value to
standard deviation of log saturated hydraulic conductivity.
A series of two Monte Carlo runs, each run having 100
different sets of hydraulic conductivities, were made for a
12 day simulation period. The spatial and temporal step
sizes of 10 om and 0.2 hour were used. The outputs were
used to compute the means and standard deviations of the

water table elevation and pressure heads at various depths.

Table 7. Input parameter values used in the Monte Carlo

simulation
Parameter Layer 1 Layer 2
Depth from surface 100 - 160 cm 0 - 100 cm
Mean of log Ks -0.173925 cm/hr =0.236572 cam/hr
S.D. of log Ks
RUN A: 203 of mean 0.034785 0.047314

RUN B: 40% of mean 0.069570 0.094629
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Input standard deviation values of log saturated
hydraulic conductivity were taken as 20% and U40% of the mean
of the log saturated hydraulic conductivity as given in
Table 7. Preliminary studies showed that input standard
deviations greater than 60% of the mean of the log hydraulic
conductivity used in this model did not give satisfactory
solutions.

Statistical analysis was done to compute the mean and
standard deviation of the outputs of the Monte Carlo runs,
and those were compared with each other to see the
relationship between the input and output standard
deviations. Tables 8 and 9 show the results of the
statistical analysis of the water table elevation and the
pressure heads, respectively. The standard deviations of
the output variables were greater when the standard
deviation of the inputs was larger.

The standard deviation of the water table elevation was
stable after 3 or 4 days from the beginning of the
simulation, then it abruptly increased at around midnight
July 27, and then decreased to the previous stable value as
time elapsed. This abrupt increase of standard deviation
might have been caused by the rainfall on July 26 (3.0 om)
and on July 27 (1.8 cm) which made the water table rise.

The standard deviation of the pressure (suction) head in the

unsaturated zone became greater as the mean of the pressure
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Table 8. Statistical analysis of water table elevation
Mean (om)* S.D. (om
Date Time oh ™ un T

7-21-84 12300 82.0000 82.0000 0.0000 0.0000
7-21-84 24100 85.6017 85.3632 0.6056 0.8461
7-22-84 12:00 86.5597 86.2826 0.6327 1.3833
7-22-84 24:00 88.5642 88.1242 1.0104 1.9568
7-23-84 24100 91.2979 90.1762 1.5606 2.7136
T7-24-84 12:00 92.2616 90.7553 1.8585 3.0562
7-28-84 24300 93.8175 91.7923 2.2626 3.6362
7-25-84 12:00 94.6333 92,2851 2.5016 4.1008
7-25-84 24100 95.7000 92.9697 2.74807 4.6765
7-26-84 12:00 96.1702 93.2091 2.7909 5.0952
7-28-84 243100 77.1658 77.3950 3.9512 6.9535
7-29-84 12100 77.3217 77.3550 3.5009 6.4523
7-29-84 24300 78.1275% 77.8255 2.9320 5.8584
7-30-84 12300 78.6392 78.0817 2.6734 5.4667
7-30-84 24300 79.6739 78.7423 2.5195 4.9618
8-01-84 12:00 81.9601 80.2158 2.6260 5.9299
8-01-88 24:00 82.7141 80.7190 2.8332 5.0439

®water table depth from soil surface.
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Table 9. Statistical analysis of soil water pressure head

Date: 7-22-84 Times 24:00
Mean S.D, (om)

Node Run A Run B Run A"Q' un B

1 71.5880 72.0227 0.9495 1.9264

2 61.5731 62.0074 0.932 1.9219

E 51.5552 51.9903 0.909 1.9127

41,5362 h1.9724 0.8933 1.9048

5 31.5153 31.9516 0.8951 1.9074

6 21.4921 21.9299 0.9024 1.9123

7 11.4680 11.9076 0.9048 1.9150

8 1.4404 1.8808 0.9101 1.9191

12 -40.3144 -39.9722 1.2688 1.8390

14 -70.3609 -68.7994 3.5525% h.o921

15 -87.7446 -87.1725 6.4598 8.0676

16 -114,5357 -111.8210 9.9173 11.0905
Date: 7-24-84 Time: 24:00

1 66.3122 68.3284 2.231 3.6165

P4 56.2961 58.3137 2.2246 3.6110

3 46.2801 48.2986 2.2162 3.6085

L} 36.2618 38.2808 2.2135 3.6062

5 26.2420 28.2633 2.2176 3.6098

6 16,2220 18.2h44 2.2200 3.6137

7 6.1989 8.2250 2.2220 3.6174

10 «24.1603 -22.1109 2.3195 3.7044

14 -84.7563 -82.7989 2.8559 5.2779

15 -107.22486 «105.7564 4.6840 7.5565

16 ~-134.3064 -131.8086 8.1408 11.4676

17 -178.2010 -173.6082 15. 7442 22.6004
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Date: 7-26-84 Time: 28:00
Mean (om) S.D. (om)
Node ~Hun A Run B Run A un
1 65.2352 68.3129 2.4545 4.7081
2 55.2225 58.2991 2.4474 4.7037
3 45.2131 48.2901 2.4401 4.7011
] 35.2075 36.2823 2.h372 4.6978
5 25.2053 28.2785 2.4397 4.6979
6 15.2064 18.2774 2.4393 4.6977
7 5.2113 8.2787 2.4390 4.6969
9 -14.6684 -11.6594 2.4021 h,6648
12 -37.44480 -35.8164 2.6749 4.8575
13 -38.2011 -38.2271 2.6165 4.1561
14 -41.1214 -81.7295 3.7579 4.2406
16 «55.1996 -56.0598 6.5376 6.8326
Dates 7-28-84 Times 24300
1 82.9631 82.7202 3.9879 6.9805
2 72.9487 72.7062 3.9789 6.9768
3 62.9341 62.6924 3.9724 6.9738
b4 52.9190 52.6787 3.9675 6.9711
5 h2.90u44 B2.6645 3.9595 6.9668
6 32.8904 32.6521 3.9572 6.9643
7 22.8752 22.6399 3.9545 6.9622
8 12.8599 12.6264 3.9491 6.9587
9 2.8419 2.6121 3.9427 6.9551
10 -7.1685 ~7.3501 3.9013 6.8584
11 =17 . 1494 =17.2110 3.7652 6.6866
14 -47.7759 -46.6425 2.8507 5.7236
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Date: 7-30-84 Time: 24:00
Mean (om S.D. (om)
Node Run A 'lﬂbn B Fun X Run
1 80.4787 81.3983 2.4293 h.9747
2 0.4638 71.3840 2.4163 4.9731
3 0.4476 61.3684 2.5100 4,9696
b 50.4305 51.3525 2.h4025 4.9664
5 ko.4127 41,3360 2.3949 4.9616
6 30.3954 31.3195 2.3967 h.9624
7 20.3745 21.3027 2.3976 4.9626
8 10. 3527 11,2836 2.396 h,9621
9 0.3271 1.2619 2.397 4.9625
13 -42,90481 -42.2052 3.0286 5.7017
14 =55.3441 -54.6247 3.1135 6.0645
15 ~68.5485 -67.6755 3.3244 6.4491
17 -96.5869 -95.0557 8.7567 10.6854
Date:s 8-01-84 Times 24:00
1 77.4253 79.4132 2.3275 5.0466
2 67.45103 69.3993 2.8219 5.0840
3 57 .39&0 59.3844 2.81n 5.0392
4 47.3781 49.3680 2.8085 5.0367
5 37.3612 39.3519 2.8056 5.0353
6 27.3431 29.335 2.8087 5.0365
7 17.3250 19.3181 2.8100 5.0380
8 7.3082 9.3000 2.8113 5.0400
10 ~12.7971 -10.7929 2.8565 5.0893
11 -23.1323 -21.1280 2.7690 5.1049
12 -3“-1316 -3202?“8 2Q1121 5013“2
15 -17.3579 -75.1632 4.5303 7.3286
16 -95.0708 ~92.9359 5.5015 8.3007
17 -116.2975 -113.8907 8.9770 12.2619
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head became smaller (more negative). During dry weather
(7-22-84 to 7-24-84 in Table 9), the standard deviation of
the pressure head decreased rapidly with depth from the soil
surface. This corresponds to a rapid change in pressure
head with depth from the lowest pressure head (most
negative) at the soil surface. Below a depth of 40 cm, the
standard deviation did not change as much even though the
mean pressure head did change considerably.

Figures 20 and 21 show plots of observed water table
elevations and 90% confidence intervals of mean water table
elevations for Runs A and B, respectively. The equation
used to compute the 903 confidence intervals was:

Confidence interval = Mean & 1.645 x SD (4.5)
where SD s standard deviation of water table elevation.
Observed water table elevation except for the value on July
29 fit well to averages and within confidence intervals.
One possible cause of the observed value on July 29
deviating from the average value and being outside of the
90% confidence interval was that the water may have flowed
directly from the soil surface to the water table along the
observation well pipe because the well pipe was not
perfectly sealed or grouted. Anothcﬁ possible cause was
that rain water flowed downward toward water table through

the cracks near the soil surface which appeared during the

dry weather.
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CHAPTER V. CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE STUDY

It appears that the model of the incorporated
saturated-unsaturated flow developed herein gives
satisfactory results. Conclusions based on the present
study are listed as follows:

1. The continuity theory of saturated-unsaturated flow
was used in the model. The results matched the observed
field data well.

2. The Monte Carlo method was applied satisfactorily
for the present stochastic model study.

3. The standard deviation of the stochastic hydraulic
conductivity has an important role in determining the
variations of the outputs, water table elevation, water
content, and pressure head. As the former increases, the
latter increases also.

4. The standard deviation of the pressure head
increased as the mean of the pressure head became smaller
(more negative) in the unsaturated zone.

The following recommendations are made for future
atudy:

1. Collection of extensive field data representing
pressure head observations is needed in order to account for
field spatial variability and to develop reliable input

parameters, such as mean and variance of hydraulic
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conductivity, infiltration parameters, and evaporation rate.

2. Develop a model to correlate the stochastic soil
water parameters between the two nodes across the adjacent
geologic soil layer interface in applying the nearest
neighbor model.

3. Find a relationship between the standard deviation
of the log saturated hydraulic conductivity and the mean of
the log saturated hydraulic conductivity that satisfies
convergence criteria of the stochastic model.

4. Implement an automatic time step adjusting scheme
in the numerical method. The automatic time step adjusting
strategy would use small time steps when the transient flow
behavior is dominant. Whenever, the transient flow is less
dominant, larger time steps would be used. This obviously
would minimize the computer time required.

5. Modify the computer program for microcomputer
application since microcomputer is much more inexpensive to
run the simulation model.

6. Develop algorithms for plant root growth and crop
leaf area index for longer simulation periods.

7. Futher apply the developed model to other field

problems to evaluate the model.
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301.
302.
363,
304,
308,
306.
307,
Jonm.
309,
310,
3k
312.
313
AT
318,
316,
N7,
310,
319,
30,
321,
322.
323,
336,
328,
326,
32T,
J26.
329,
230,
3.
3.
333,
3.
3.
336,
337
238,
330,
340,
Jate
242,
3436
364,
345,
346,
a7,
348,
349,
250,
s,
352«
I3,
354,
358,
356,
387,
68,
0.
3600,
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PSIMINE-18000.
FLUXE 240,0010
FLUNNBEO .

FOR SUBROUTINE GALANS

ann

LLIR L 1g!
STOREL = (THETAO(L) ¢ THETAOINY) ¢0,000 ¢OELL
00 20 Jwa.Nm}
STOREL = STOREL ¢ YHETAO(J) €OELZ
0 CONTINUE

GENGRATE FINST STAINGS OF RANOCH NUNGERS AND OISCARD ThEw

Nnnn

OSEED & 123487.00
[T 751
00 3O J#)e8
CALL GONML (DSELDeNA o N)
30 comnTINUE
[ 4
COESR0E000000006E04000006600000400GESE0E00C00000008000000080400600000000¢
<
< MAEN OO LOOP COUNTING MONTE CARLO AUNG
<
nCOUh? =}
"HILE (MCOUNTLEMC) 0O
<
CRIRGEORANAEASE0ERE40EEE20GEE0S00E00RE0SAGCEIAE00E000044G00400000000000S

[

(4 COMBUTE STOCHASTIC SATURATED HYDRAULIC CONODUCTIVITY FON
n nbnx.rnnl-IQ-AIOO-PPb‘nlc.-tlxnnbnoilﬁnolnaitoﬂnr
ﬂ

CALL NEIBORISHSAT LOEPRESPSININ)
WRITE(G006) (SKSAT(EYs I3} eN)
606 FORAMATE® ¢, *STOKASTIC KSAREII® *oI0F §0.0/20N:10F10.8/)

SEY INITIAL VALUES

ant

TFLUXE 30.00
TFLURN 30,00
DEPRESSO DO
TABLEZ02.000
ABST =0,
COND =0.68
S0CLF=0.00
SAKE=C DO
DO 37 ) el
SHESEED) SINISOL])
ISCANGE )= SCANO() )
PSY ¢1) =PRIOEY)
THETAL(L) sTRETAOL))
IHEYAM(IISTHETAOEE)
THETADCS) sTHTABOL])
37 CONTINUE
PSINDEPSI(N)
(4
CER20008085080880880000000 004080004048 0800008080044840000000 0800404 02¢4808%
4
(4 COMPUTE INITIAL VALUES OF MYORAULIC CONOUCTIVITY AND
[ 4 SPECIFIC WAIER CapACYY



Joi.
J82.
363,
Joo,
36%.
Jeé.
67,
360,
36¢.
370,
378
372,
373,
374,
378,
376,
IV,
370,
e,
300,
It
J02.
183
Jes.
398,
Jeé.
307,
300,
Je9,
190,
308,
3oz,
3.
394,
305,
3%,
37,
30,

400,
QL.
402,
003,
404,
406,
406,
407,
408,
409,
430,
atte
432.
433
L3
435,
16,
437,
(21 M
419,
420,
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[
CALL CONDUCIPSITNETALSSF)
CONNBRE (M)
<
COGEEEELEECRCESESRE 00800 ECE00CESEEESGISEEEEECEEEEREEE00ECELLEEEEEEESEEE
[ 4

¢ 00 LGOS FOR THE LENGTN OF THE DAYS OF THE SIMULATION PLRICD
[4
CURGEQaGeeteettedtettedet ettt 0Ottt iCetRettet ittt ettt atstesesdse
<
NjsQ
KEUNT =}
wriLE IROUNT.LELENGS) OO
IFCIRAINIKOUNT I 6T, O) MisNis)

<
[ 4 CETCAMEINE NUMBEN OF TINE STESS AND CECINNING TINE IN A DAY
<
IFICOUNT o NE o) «AMD:s ROUNT MNE LENGS) THEN
1Y87EPe (207061 740.0))
TIngs0.00
({8 ;
IFIROUNT Q)5 THEN
1TSTEPE ((24~INCURR)I/DELTY+0.01)
TINE=OFLOATYL INOUAS )
gL98
J11STEPs (INQURE/0ELT+0.0))
TINg»0.00
ENOD IF
EnD 15
SAGST =0,
CORREORLLER0R00G00000REE0EEA00E0000000000 000010000100 0000004000000000 000
[ 4
[ CCHBUTATION FOR CACH TINE STCEF 1IN A DAY
[ 4

CHECS058040400000000480000004000000000030404000000088040000000008000000
4
B 40 J=).1TSTEP
TIME=TIME4DELTY
[ WRITE(6e®) *0AYE *olOAVYRIKOUNT <)ot TINES *oTINE
BATE30.00
IFCIRATMINOUNT2.£0.0+) THEN
OELP LKOUMT » J)3DELPOINOUNT 2 )

€0 Y0 X0
EnD IF
<
(4 COMPUTE INTERCEPTION IF NCCESSARY BY CALLING INTCER.
(4
IFCOELPOINOUNT 2 ) o6T o0 «ANQe SADGT LT 0.8} THEN
CALL INTCEPIDELPOIKOUNT U} sOELPIKOUNT ¢ J 1o ABSTSABST)
C€L5¢
CELRIKOUNT » J)SOELPEIKGUNTS J)
End IF
(4
[ 4 UPOATE INFILTRATION PARAMETERS FROM THE AMC AT TOP 10 Cw SDIL
g AND CROP LEAF AREA INDEX JUST DEFORE THE FIRST RAINFALL N A DAY,

IFATIMELETSTART(NL o8 2 oAND o (TENE*DELTIGY L TSTARTENG 1)) THEN
AMCFLTHETACNI® 2.0THETAIN~LD) /3.8 100,
ASOIL=ASOILMIDENP tANSIANC~FCS))
IFCASOIL.GTLASOILH) ASOILFASOILS



a2,
22,
423,
424,
025,
LY { 1%
427,
428,
029,
430,
431
032,
433,
434,
43%.
436,
437,
438,
439,
440,
44},
0 g,
),
204,
445,
[T ™
447,
448,
49,
460,
atie
402,
453,
[1.1 7%
456,
(1] ™
3%,
458,
459,
460,
400,
462,
03,
464,
445,
466,
4067,
468,
4069,
670,
78,
472,
473,
T4,
78,
476,
477,
aT8,
479,
480,

b 1]

AANDN n

AN n

AANANA

40
(- 31 ]
eze

630
540

[ 4
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IFECLAT.GTe3.0) CLAIRIO
ASOILEZASOIL ¢0.38CLAL
PSOILaPSOILNS (ANC/PCP JoaPu
CCMPUTE AVAILABLE PONE SPACE I T0P 60 CM OF SCIL (CM),
SHASHE TOTSTR=C(THETAINDI/Z ¢ THETAIN=L IS THETAINC2I¢THETAINC])
] STNETAIN=G IO THETAIN=S )+ THETAIN=A)/2.)0DELL
IFESMASM.LT c0c) SHASMED,
L1 1

IF (OELPIROUNT ¢ J2 o674 040001 ORe ODEPRET.6T.0.0001) THEN
CALL INFILT (OELPIKQUNT 4 J)DELTD
WhITE(G o0 ) INFILY RATE®® RATE

ENG 1P

COMPUTE ACTUAL SOIL EVAPOLATEION AND PLANT TRANSPIRATION FROM
THE PET,

CALL ET(THETA PEYIKOUNT IR oRETAREALCVAP OCPRESABET « (LAY R00DT,
] NRZ oM )
FLURNSAEVARRATE

CALL FLOWISSF OEPRESOTPNAX PSS ININRE)
UBDATE TOTAL BOUNDARY FLUNKS

TPLUX] & TPLUXS « FLUXISOELY
TFLUNN & TRFLUAN ¢ (FLUNNSTARE JeOELY
WRITECG oS I FLUNNE oFLUNMe® THLUNNES o TFLUNN

COMPUTE WATER TARLE ELEVATION ANO WATER BALANCE AT SELECTED
FInE STCRS

1F 00600300 O0,J:00.60 OR: J.£0:90s ORs JeE3.120) THEN
CALL WTABLE (N OELZ «FSleTAMLE)
CALL BALANG (M OELZe THETA)
PRITE(6:610) J0AYRIROUNT~5, TIME, TANRE
WRITE(6.020) STONC)e STOREZ. PERCY
WRITE(6:030) (THETALL)e Is)eM)
WRITC(6:040) (PSIEIDs FxheN)
Enp 3F
CONTINUE

FORMATE/® *ob UL AN QAY 5%:5as10%e *TINE =0, Fbele 10X,
H SHATER TABSLE =t: FO.&s *CH*)
FORMAT(? ¢, *STOREGE FROM BOUNDARY FLUXES3I®FT.2.° STOREGE FROM
§ WATER CONTENTE®, FT.20° QIFFERENCE M % 3%, FH.2)
FORMAT (/° ot INETAILIE )75 T7,0)
FOSMAT(/° *o®ROLILYS *oj0F L1 0/8%:7F L1 o0}

EMD OF COMPUTATION FOR A DAY
KOUNT = KOUNT ¢ )
END WHILE

EnND OF A WONTE CARLD RUM
MCOUNT = MCOUNT +
END WHILE
sToe
EnD

CEBESR 880408000880 RERRRSSREE28E20402408885880 200805000800 000082080808%



488,
482,
&0,
484,
488,
486«
87,
408,
“09.
490,
(1} ™
92,
493,
804,
408,
36,
3%,
«90,
9%,
$00.
-1}
602,
%0),
804,
606.
506,
807,
%200,
809,
510,
L 2%
[ 3 F XY
613,
1 21 1
21%,.
Shé.
[ % P
%18,
859,
520,
525,
522,
923,
924,
63%.
26,
o827,
528,
829,
530,
538,
832,
533,
936,
535,
536,
837,
838,
539,
540,
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CE0400CNESECEEEEEREEEE040000000G0GE0E0EE0SLESREAEEEEESSER0803GECEE0060S

AMOALAN/ANAOANANRNNNARAAAND [, ]

anns

20

ann

3o

AAN®

SUSROUTINE NE JGORESKEAT 0ERRESPIININ)

THiS SUGRCUTINE COVWPUTES Tut STOCHASTIC SATURATED HYDRAULIC
CONCUCTIVITY DISTRIBUTION USING THE FIRST QROER NEAREST NEIGHEOR
STIQCHMASTIC MOOEL, OUTPUTS ARE VALUES OF SATURATEC mYORAULIC
CCNDUCTIVEITIES FOR THE SLOCRS IN EACH SOIL LAVER, SKSAY

CERCEEGEEPESECRREEENGEOEEEGQCUEERGICCRECEERECUSERGEAENESRREREREERLEEERRS

VARJAME DEPINDITION (LOCAL)

e RIGHT MAND SIOE VALUES OF TRIDIAGONAL MATREX

4 SOLUTION OF NEAREST MEIGHBOR MODEL

€%a MULTIBLIER In THE NEAREST-NETGHAOR MODEL

R GENERATED NOAMAL PSELOORANDON NUNBERS

v COMNMON LOCGARITHMIC SATURATED WYOMAUL IC CONCUCTIVITY
wil.d) COEFFICIENTS OF TRIOIAGONAL MATRIN

NN INGER USED 1IN SUBBCUTINE TRIDIA

6000000083088 000C00R NS00 000S00E0 G006 ECRARGGEAETENEREEEEEESEEeOEn

TeSLICIT REALES (BM.0-2)

REALES R(IO)

CONNON/NUMEZ | SUBMOIO D eNeNL

COMMON/NE S80/VYNEANIG Do YEOEE) MO L «BHO2 +ALPAJDSEED
CIMENSION B(28):CE20)o¥ (2900w I8 3D 5KSAT(TO)

L L]

IBEGINZ)
JEAO I SUENOLD)
20 80 Usi.NL

SET UP TATOIAGONAL MATRIN COEFFICIENTS

Mg STSLUONDIK )=}
Wiled2)®} .00
WEiedDu=aLPA
wEISUSMOENT ) )3 ~ALPA
i JSUBNDIR ) +2)33.00
00 20 JxQ.NM)

BESel )E=ALRAZ2.00

wiJe2)5) 00

w6 Je3)T WiJed)
COMNTINUE

CEMEBATE MOAMALLY DISTRIGUTED RANOCH NUNBERS AND SEY UF ANS

MIZISUBNO(K )
CALL GEMNMLIOSEED N R}
EFAZYERINISOSART (ALFASALPA/2.,00¢ 1.DC ~2.00¢ALPAARNOY
; * ALPASALPARRNOR/2.00)
86 30 Jzi.0R
B(IIaETASRI D)
CONT INUE

SOLVE TRIDIAGONAL MATREIX BY CALLING TRIDIA
CALL TRIDIA(NR oW oD sDONNAMDEPRE S PS ENIMN)Y



S48,
842,
843,
S46,
848,
846,
547,
S48,
849,
860,
861,
882.
693,
564,
856,
886,
567,
690,
449,
960,
seil.
662,
863,
LT L
56%.
866,
S67.
668,
569,
570,
LY 4
872
573,
[ 3L
878
676,
877,
578
570,
680,
S85 e
8Z.
983,
-7 L 0%
688,
GRe.
687,
588,
s8R,
690,
$9)e
$92.
593,
0fe,
59%.
896,
667,
698,
698,
600,

3%

>
(-]

ANAABAAAN ANAN

e
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00 36 Jsm)NR
JISIBEGING Y=L
Ctisynmty)

CONT INUE

CALCULATE TME STOCHASTYIC SATURATERD MYDRAULIC CONDUCTIVITIES

00 40 KK=]1OEGINIEND
Yikg e YNEANIK) ¢ Cl(eR)
SASATIRK] = OENP(2,3024000V (N )}

CONTINUE

If (€ EQ«NL)} G0 TO 80O

I0EQ INRIENG)

1ENOS FENO* ISUBNDOIR® L)

CONTINUE

g TuUeN

NG

S04 400000000000 0RS00SRRSRGCEEREARGEE20E0S000ERE00004C0R0E00ECESEREES

SUBRBUTINE PLANTIOELENRZCLALA0OT}

Tei$ SUBACUTINE CETYERAMINES THE ROOT OENSITY DISTRIGUTION USING
CCUATION BY MOLZ AND RENSOM (1970)¢ AND CROP LEAF ARCA INOEX.
CONSTANT CLAT AND TOTAL ROOT OKPTH OF 3.0 ANMD 65 CM WERE USED.
GUIPUTS ARE NAT AND ROOT(I).

CRG0GEEEE04400000000400800000080600000000000004080000800004004000800004000

IMSLICIY REALES (A~MHo0-1)
GINENSION ROOTEI0D.000T74(10)

USE FUNMCTION OEPINITION FOR ACCUMULATED ROOT DENOEITY,
QOEZ+0EPTN)IE] 062 /0CPTH =0,061¢1/0EPTH/OEPTH
CLAS =3.0
[T FE 3
OEPTHE INRI~0.5)008L2
00 10 st NP}

Is(1-0.0)008L2
ROOYEII=00(Z2.0CPTN)
IFETo6Ce2) ROOT(])SROOTIEII-ROCTIER~S)
IFET.EQ.1) ROOT(])aR00VICT)
CONTINUE
g TuRM
N

[ 4
CHEERB0QER0040808006 008480800008 08000000 0000000080000 0004000840040000040400

AN/ ANN A

Ly

SUBROUTING PANEVR (PANLENGS o PET +OCLT » IHOURS JHOURE )

THIS SUSROUTINE CALCULATE TNE POTENTIAL EVAPOTRANSPIRATION FROM
PAN CYARQRATION OATA USING SANTON®S MODEL (1974). AND DISTRIBUTE
THE DAILY PET OVER SIX FOUR-HOUR PERI0DS.

QUTPUT 16 PET ANOUNT IN EACH TIME STER (CM).

SELLESRERER0008 0000000000008 000804000000 08 0800000050080 050048044006¢

INPLICET REALSS (A~ko0-2)
DINENSION PET(16320)4PANI20)

DO 10 1%} LENGS
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(T30
682,
663,
664,
(1.1 19
066 .
667,
060,
[T LN
6704
[ 24 1Y
[ 32 I
(X2 I
T4,
eTh,
76,
6?7,
678
7%,
680,
(120
682,
683,
[ Y119
[ 1. 7%
(1 ]
6«87,
[ 1.1
089,
490
[ 1]
692¢
673,
[ 11
(1. 1%
(11
o7,
(1™
6099,
700G,
Tole
702,
703,
T04,
06,
706,
707,
T0R.
709,
T10e
Tite
Ti2e
T13e
Tis,
F15.
716,
Ti7.
T8,
719,
720,
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Ting = 0.00
N0 1F
ENO If
IFCINATNGI).E0.0) THEN
00 10 Jsl.lT91EP
10 DELPOLI+J)E0,.00
nse
NE % M) g
BEAOERB00) Mo FTSTARTINGsR1D:TENDIND o 11 2eAMOUNT(RT) 115),M)
00 30 KulM
FFETENDENT R I-TSTARTINI oK) JLELDELY) THEN
LENGTNIR )=}
cLse
LENGTHIR)S ((TENOINE WK I-TSTARTINI«K))/DELTY ¢0.40909)
END &P
n CONT ENUE
L[4 COMPUTE OELPO OUREING CACH TIWE STEP
00 SC Jel l7STED
Tivgs TINE ¢ OCLY
OELPGIEsJ) = 0,00
IFETIME LT TSTART (NI o1 1o0ELT/72.00.TINE GULTENOIND M) SDELT/ZZIGOTONO
00 100 KX&)om
IFETIME o CE o TETABTINS sl JOOELT/20AND < FINE oL Yo TEND (NS oN ) *LELT/2)
' OELPO(S o INAMOUNT (R I/ALENGTHIK)
IFIOELPO(S e J) €. 0) GO TO %0
100 CONTINUE
8¢ COnTINUE
END IF
00 COMTINGE
SOC FARNATIII (2P 7,20 FTe2))
RETURN
e
4
COBSEELNER00C0SERNERA0EESSES0ERAREAEAS000R0CE0REGEAECREEERSR0R0ERERES

SUBRCUTINE INTCERIDELPO,DELPARST 5A0ST)
SEREEERERARNE0ARRRAEE00SAS0000SF0 0S4 GRS ARREE800004440AER 000080040004
THIS SUBSOCUTINE COMRUTE THE AMCUMT OF IMITIAL ABSIRACTION AT THE
SEGCINNING OF A RAINFALL EVENT. MAXINUM VALUC OF SADST 1S5 0.10 (M,

CUTRUTS ARE ARST. SABST AD OELPEDeM).

SESARRGE0GSEL00004 0044004400000 E0SE 0 0EN SR E MGG EEA 2 0004000000008

AANRNBAANNDN

IMSLICIY REALOO (A*Me0O~])
IFISARST4OELPE.LECD,30) THEN
ADST zADST+ OCLRD
SADST=5A05T+OCLRD
oCLP30,
£Lse
OCLP 30ELPO-(0.10-540857)
ARSTABST4(0.10-54057)
SADST50.10
END ¥
RETURN
£no
4
CHER0444 0024400084808 80 0080440208088 4880 8860000 R440080 040000088440
<



721,
T3
723
T34,
72%.
r26,
3T
738,
729,
730,
73t
732
133,
T34,
71%,
A LS
Tt
738,
739,
740,
Tas,
L
763,
Teb,
Fe% e
Tab,
T47,
b Z1 8
P49,
790,
785
182,
Ll 3 1
TO6e
765,
756,
BT,
7598«
79%.
760,
TR,
762«
763,
TG4,
0%,
N
T6%,
Th8 .
769,
F7@.
L T
172
173,
74
T7%,
76,
7,
770,
7%,
780,

AaNnNAAATTYTARAARANANANTrANN

nAAAN

5e

[ R K]

ANCN

20

146

SUBROUTINE INFILTIDELP.OELY)

IHES SUBROUTINE COMPUTE AVEOAGE IV ILTRATION RATE FOR A TINE PERIOD.
HODIFIED NOLTAN'S RQUATION WITH BAILEY®S JTERATION METHOO 1S USED.
OUTPUTS ABE AATE. OCEPRES: SHASNSOELF. AND SAKE.
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VARTABLE DESCRIPTIONS (LDCAL)
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Ch INFILTRAION AND ADJNUST AR0DIL
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SRINEF.GT.1.0) REF=).0
£Lse
REF%3.0
EnD I
ASCILIASUILOREF
FizTOTSTIR=SMASM

COomEUIE F2

IF(FL.GE.TOTSTR) THEN
F23F 1 +CONDSOCLTY
(18- 4
FIsF)
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FR2S02=APTOSNE€{PSOIL=2.)
FAsFQ <PRE/(FPIPO=FPR¢FFID/FFEP0/2.00)
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IPCISCANIL) €02} THEN
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TEST PAGSSUNE NEAD CONSTRATINT AT THE SOIL SURFACE
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GUBRCUT INE WYABLE (N, OCL2. PS8 TARLE)

THIS SUBROCUTING COMBUTES THE WATER TABLE OEPTN FROM THE GAOUND
SURFACE USING PRESSURE MEAD VALULS BY LINEAR INTERFOLATION
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This SUSRCUT INE COMBUTES THE OIFFERENCE OF CURRENT WATER STORAGE
s THE OONALIN BETNECN, 1) FROM THE INITIAL WATER CONTENT AMD
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APPENDIX B: DATA
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Water table elevation

Date Time Water table elevation
from soil surface (om)

7-21-84 12100 82.0
7-25-84 17:00 92.1
7-29-84 16300 65.7
8:01-84 19100 78.3

Soil water pressure head (am)

Depth from Date and time
soil 7-21-84 7-25-88 7-29-84 8-01-84
surface (cm) 12300 17100 153130 19:00
150 68 63 82 73
130 h8 b2 58 51
110 28 21 33 35
90 8 5 15 12
70 =20 =21 -10 -7
50 -38 =42 -32 -26
30 -80 -104 -62 =52
10 ~180 -156 ~115 ~105

Note: pressure head shows average of two replicates.
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Rainfall

Date "ﬁ;;;‘xll!"fg"‘ Amount (om)

7-26-84 3:00 4320 0.508
4:20 4340 1.016
bsb0 6340 1.473
total 2.997
7-27-84 13330 13140 0.914
13140 15100 0.762
15:00 16340 0.152
total 1.828
8-01-84 12110 12320 0.127
total 0.127
Pan evaporation (om)

Date Pan evaporation Date Pan evaporation
7"21'8“ 009h 1'27'8“ 0056
T-22-84 0.97 7-28-84 0.43
T-23-84 0.76 7-29-84 0.64
7-24-84 0.79 7-30-84 0.69
T-25-84 0.53 7-31-84 0.58

7-26-84 0.61 8-01-84 0.58
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Soil water retention data for a Webster silty clay loam
(for main drying ourve)

Pressure head (om) Water content
0 0.520"
-10 0.492
=30 0.476
-50 0.443"
-70 0.408
-100 0.380"
-150 0.343
-200 0.322"
-250 0.303
-300 0.29%"
=350 0.286
-400 0.278"
-750 0.247
-1000 0.233"
-1500 0.218
-3000 0.195
~5000 0.187*
-10000 0.171
-15000 0.160*

*Laboratory data in this study.
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